Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045197925> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2045197925 endingPage "347" @default.
- W2045197925 startingPage "347" @default.
- W2045197925 abstract "We consider both the algebraic complexity and numerical properties of problems involving Toeplitz matrices. From the algebraic point of view, we derive upper and lower bounds for number of multiplications required to compute the inverse or the product of Toeplitz matrices and consider several cases as well. The lower bounds for the general cases are in agreement with earlier results, but the specialized lower bounds and all the upper bounds are new. We also derive bounds for the number of multiplications needed to multiply certain rectangular Toeplitz matrices that are important in spectral estimation.From the numerical point of view, we study the numerical stability of transform-based circular deconvolution. We show that if the matrix being inverted is well conditioned then the computed solution is close to the exact solution. We then study the numerical stability of algorithms used to invert banded Toeplitz systems. We analyze the numerical behavior of several algorithms from the literature. We show that all of these algorithms are unstable. One algorithm is shown to be weakly stable when used to invert a symmetric banded Toeplitz matrix with a well-conditioned positive definite infinite extension. We present a new algorithm which is weakly stable under a more general condition and can be modified to invert certain Toeplitz-like matrices.Finally, we study the numerical solution of symmetric positive definite Toeplitz systems, A$sb n$x = b, with iterative methods. We present a quadratically convergent algorithm based on steepest descent. Numerical experiments which indicate that the algorithm behaves better than a similar method based on residual correction are presented. We introduce a new class of preconditioners called p-extended circulant (PEC) preconditioners. We consider the case when the elements of A$sbinfty$ are the Fourier coefficients of f, a positive function in the Wiener class. With PEC preconditioners we show that computing x to precision $epsilon$ requires no more than $O(n log n)$ + $d(f, epsilon)$ operations, which is a record bound. We present efficient algebraic implementations of these new methods as well as previously proposed algorithms. These implementations reduce the arithmetic complexity of each iteration." @default.
- W2045197925 created "2016-06-24" @default.
- W2045197925 creator A5076625809 @default.
- W2045197925 date "1991-03-01" @default.
- W2045197925 modified "2023-09-25" @default.
- W2045197925 title "Arithmetic complexity and numerical properties of algorithms involving Toeplitz matrices" @default.
- W2045197925 doi "https://doi.org/10.1016/0165-1684(91)90021-a" @default.
- W2045197925 hasPublicationYear "1991" @default.
- W2045197925 type Work @default.
- W2045197925 sameAs 2045197925 @default.
- W2045197925 citedByCount "3" @default.
- W2045197925 crossrefType "journal-article" @default.
- W2045197925 hasAuthorship W2045197925A5076625809 @default.
- W2045197925 hasBestOaLocation W20451979251 @default.
- W2045197925 hasConcept C11413529 @default.
- W2045197925 hasConcept C122212055 @default.
- W2045197925 hasConcept C136119220 @default.
- W2045197925 hasConcept C147710293 @default.
- W2045197925 hasConcept C202444582 @default.
- W2045197925 hasConcept C33923547 @default.
- W2045197925 hasConcept C41008148 @default.
- W2045197925 hasConcept C94375191 @default.
- W2045197925 hasConceptScore W2045197925C11413529 @default.
- W2045197925 hasConceptScore W2045197925C122212055 @default.
- W2045197925 hasConceptScore W2045197925C136119220 @default.
- W2045197925 hasConceptScore W2045197925C147710293 @default.
- W2045197925 hasConceptScore W2045197925C202444582 @default.
- W2045197925 hasConceptScore W2045197925C33923547 @default.
- W2045197925 hasConceptScore W2045197925C41008148 @default.
- W2045197925 hasConceptScore W2045197925C94375191 @default.
- W2045197925 hasIssue "3" @default.
- W2045197925 hasLocation W20451979251 @default.
- W2045197925 hasOpenAccess W2045197925 @default.
- W2045197925 hasPrimaryLocation W20451979251 @default.
- W2045197925 hasRelatedWork W1969863203 @default.
- W2045197925 hasRelatedWork W1979752462 @default.
- W2045197925 hasRelatedWork W2058798112 @default.
- W2045197925 hasRelatedWork W2168108266 @default.
- W2045197925 hasRelatedWork W2353873167 @default.
- W2045197925 hasRelatedWork W2368540400 @default.
- W2045197925 hasRelatedWork W2385112528 @default.
- W2045197925 hasRelatedWork W251813912 @default.
- W2045197925 hasRelatedWork W2524060300 @default.
- W2045197925 hasRelatedWork W3213933669 @default.
- W2045197925 hasVolume "22" @default.
- W2045197925 isParatext "false" @default.
- W2045197925 isRetracted "false" @default.
- W2045197925 magId "2045197925" @default.
- W2045197925 workType "article" @default.