Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045275992> ?p ?o ?g. }
- W2045275992 abstract "Cooling of molecules via free-space dissipative scattering of photons is thought not to be practicable due to the inherently large number of Raman loss channels available to molecules and the prohibitive expense of building multiple-repumping laser systems. The use of an optical cavity to enhance coherent Rayleigh scattering into a decaying cavity mode has been suggested as a potential method to mitigate Raman loss, thereby enabling the laser cooling of molecules to ultracold temperatures. We discuss the possibility of cavity-assisted laser cooling of particles without closed transitions, identify conditions necessary to achieve efficient cooling, and suggest solutions given experimental constraints. Specifically, it is shown that cooperativities much greater than unity are required for cooling without loss, and that this could be achieved via the superradiant scattering associated with intracavity self-localization of the molecules. Particular emphasis is given to the polar hydroxyl radical (OH), cold samples of which are readily obtained from Stark deceleration." @default.
- W2045275992 created "2016-06-24" @default.
- W2045275992 creator A5005806120 @default.
- W2045275992 creator A5010733636 @default.
- W2045275992 creator A5013794137 @default.
- W2045275992 creator A5026697978 @default.
- W2045275992 creator A5040469723 @default.
- W2045275992 creator A5044186246 @default.
- W2045275992 creator A5049189098 @default.
- W2045275992 date "2008-02-04" @default.
- W2045275992 modified "2023-09-26" @default.
- W2045275992 title "Prospects for the cavity-assisted laser cooling of molecules" @default.
- W2045275992 cites W1482144978 @default.
- W2045275992 cites W1512158086 @default.
- W2045275992 cites W1621707536 @default.
- W2045275992 cites W1964777041 @default.
- W2045275992 cites W1979863054 @default.
- W2045275992 cites W1981554416 @default.
- W2045275992 cites W1982474556 @default.
- W2045275992 cites W1983718136 @default.
- W2045275992 cites W1983720079 @default.
- W2045275992 cites W1984212283 @default.
- W2045275992 cites W1987758799 @default.
- W2045275992 cites W1993998989 @default.
- W2045275992 cites W1998162900 @default.
- W2045275992 cites W2002929378 @default.
- W2045275992 cites W2003941383 @default.
- W2045275992 cites W2011055570 @default.
- W2045275992 cites W2017154611 @default.
- W2045275992 cites W2019227213 @default.
- W2045275992 cites W2019353183 @default.
- W2045275992 cites W2021630495 @default.
- W2045275992 cites W2022249602 @default.
- W2045275992 cites W2023124357 @default.
- W2045275992 cites W2026276233 @default.
- W2045275992 cites W2026841014 @default.
- W2045275992 cites W2033004519 @default.
- W2045275992 cites W2037526634 @default.
- W2045275992 cites W2038758090 @default.
- W2045275992 cites W2040916171 @default.
- W2045275992 cites W2042978095 @default.
- W2045275992 cites W2045108970 @default.
- W2045275992 cites W2046527689 @default.
- W2045275992 cites W2056929087 @default.
- W2045275992 cites W2058092128 @default.
- W2045275992 cites W2062935524 @default.
- W2045275992 cites W2066713443 @default.
- W2045275992 cites W2069963698 @default.
- W2045275992 cites W2070055395 @default.
- W2045275992 cites W2074140403 @default.
- W2045275992 cites W2077651166 @default.
- W2045275992 cites W2085890526 @default.
- W2045275992 cites W2104073708 @default.
- W2045275992 cites W2114224650 @default.
- W2045275992 cites W2118677214 @default.
- W2045275992 cites W2131386058 @default.
- W2045275992 cites W2141625005 @default.
- W2045275992 cites W2145703846 @default.
- W2045275992 cites W2152581297 @default.
- W2045275992 cites W2153971351 @default.
- W2045275992 cites W2154850918 @default.
- W2045275992 cites W2160456441 @default.
- W2045275992 cites W2168199099 @default.
- W2045275992 cites W4211105962 @default.
- W2045275992 cites W4233951436 @default.
- W2045275992 cites W78914268 @default.
- W2045275992 doi "https://doi.org/10.1103/physreva.77.023402" @default.
- W2045275992 hasPublicationYear "2008" @default.
- W2045275992 type Work @default.
- W2045275992 sameAs 2045275992 @default.
- W2045275992 citedByCount "77" @default.
- W2045275992 countsByYear W20452759922012 @default.
- W2045275992 countsByYear W20452759922013 @default.
- W2045275992 countsByYear W20452759922014 @default.
- W2045275992 countsByYear W20452759922015 @default.
- W2045275992 countsByYear W20452759922016 @default.
- W2045275992 countsByYear W20452759922017 @default.
- W2045275992 countsByYear W20452759922018 @default.
- W2045275992 countsByYear W20452759922019 @default.
- W2045275992 countsByYear W20452759922020 @default.
- W2045275992 countsByYear W20452759922021 @default.
- W2045275992 crossrefType "journal-article" @default.
- W2045275992 hasAuthorship W2045275992A5005806120 @default.
- W2045275992 hasAuthorship W2045275992A5010733636 @default.
- W2045275992 hasAuthorship W2045275992A5013794137 @default.
- W2045275992 hasAuthorship W2045275992A5026697978 @default.
- W2045275992 hasAuthorship W2045275992A5040469723 @default.
- W2045275992 hasAuthorship W2045275992A5044186246 @default.
- W2045275992 hasAuthorship W2045275992A5049189098 @default.
- W2045275992 hasBestOaLocation W20452759922 @default.
- W2045275992 hasConcept C101952150 @default.
- W2045275992 hasConcept C120665830 @default.
- W2045275992 hasConcept C121332964 @default.
- W2045275992 hasConcept C137286776 @default.
- W2045275992 hasConcept C159317903 @default.
- W2045275992 hasConcept C169573571 @default.
- W2045275992 hasConcept C184779094 @default.
- W2045275992 hasConcept C190269828 @default.
- W2045275992 hasConcept C191486275 @default.
- W2045275992 hasConcept C205309187 @default.