Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045283281> ?p ?o ?g. }
- W2045283281 endingPage "197" @default.
- W2045283281 startingPage "186" @default.
- W2045283281 abstract "We propose a multilinear independent component analysis (ICA) framework called generalized N-dimensional ICA (GND-ICA) by extending the conventional linear ICA based on the multilinear algebra. Unlike the linear ICA that only treats one-dimensional data, the proposed GND-ICA treats N-dimensional data as a tensor without any preprocess of data vectorization. We furthermore introduce two types of GND-ICA solutions and analyze their efficiency and effectiveness. As an application, the GND-ICA can be used for multiple feature fusion and representation for color image classification. Many features extracted from a given image are constructed as a tensor. The feature tensor can be effective represented by GND-ICA. Compared with the conventional linear subspace learning methods, GND-ICA is capable of obtaining more distinctive representation for color image classification." @default.
- W2045283281 created "2016-06-24" @default.
- W2045283281 creator A5012390446 @default.
- W2045283281 creator A5044216245 @default.
- W2045283281 creator A5083331685 @default.
- W2045283281 creator A5086851360 @default.
- W2045283281 date "2013-03-01" @default.
- W2045283281 modified "2023-10-05" @default.
- W2045283281 title "Generalized N-dimensional independent component analysis and its application to multiple feature selection and fusion for image classification" @default.
- W2045283281 cites W140926516 @default.
- W2045283281 cites W1520035080 @default.
- W2045283281 cites W1969294188 @default.
- W2045283281 cites W1981153982 @default.
- W2045283281 cites W2013912476 @default.
- W2045283281 cites W2018282388 @default.
- W2045283281 cites W2019502123 @default.
- W2045283281 cites W2024165284 @default.
- W2045283281 cites W2024182011 @default.
- W2045283281 cites W2046763563 @default.
- W2045283281 cites W2053673812 @default.
- W2045283281 cites W2072509929 @default.
- W2045283281 cites W2083702762 @default.
- W2045283281 cites W2091328348 @default.
- W2045283281 cites W2099741732 @default.
- W2045283281 cites W2102544846 @default.
- W2045283281 cites W2109868644 @default.
- W2045283281 cites W2116767824 @default.
- W2045283281 cites W2141200867 @default.
- W2045283281 cites W2162762921 @default.
- W2045283281 cites W2167388003 @default.
- W2045283281 cites W2914885528 @default.
- W2045283281 cites W4245785860 @default.
- W2045283281 doi "https://doi.org/10.1016/j.neucom.2012.09.020" @default.
- W2045283281 hasPublicationYear "2013" @default.
- W2045283281 type Work @default.
- W2045283281 sameAs 2045283281 @default.
- W2045283281 citedByCount "9" @default.
- W2045283281 countsByYear W20452832812015 @default.
- W2045283281 countsByYear W20452832812017 @default.
- W2045283281 countsByYear W20452832812018 @default.
- W2045283281 countsByYear W20452832812019 @default.
- W2045283281 countsByYear W20452832812020 @default.
- W2045283281 countsByYear W20452832812021 @default.
- W2045283281 countsByYear W20452832812023 @default.
- W2045283281 crossrefType "journal-article" @default.
- W2045283281 hasAuthorship W2045283281A5012390446 @default.
- W2045283281 hasAuthorship W2045283281A5044216245 @default.
- W2045283281 hasAuthorship W2045283281A5083331685 @default.
- W2045283281 hasAuthorship W2045283281A5086851360 @default.
- W2045283281 hasConcept C136119220 @default.
- W2045283281 hasConcept C138354692 @default.
- W2045283281 hasConcept C138885662 @default.
- W2045283281 hasConcept C14394260 @default.
- W2045283281 hasConcept C148483581 @default.
- W2045283281 hasConcept C153180895 @default.
- W2045283281 hasConcept C154945302 @default.
- W2045283281 hasConcept C155281189 @default.
- W2045283281 hasConcept C173608175 @default.
- W2045283281 hasConcept C17744445 @default.
- W2045283281 hasConcept C199539241 @default.
- W2045283281 hasConcept C202444582 @default.
- W2045283281 hasConcept C2776359362 @default.
- W2045283281 hasConcept C2776401178 @default.
- W2045283281 hasConcept C32834561 @default.
- W2045283281 hasConcept C33923547 @default.
- W2045283281 hasConcept C41008148 @default.
- W2045283281 hasConcept C41681595 @default.
- W2045283281 hasConcept C41895202 @default.
- W2045283281 hasConcept C51432778 @default.
- W2045283281 hasConcept C59404180 @default.
- W2045283281 hasConcept C60321788 @default.
- W2045283281 hasConcept C84392682 @default.
- W2045283281 hasConcept C94625758 @default.
- W2045283281 hasConceptScore W2045283281C136119220 @default.
- W2045283281 hasConceptScore W2045283281C138354692 @default.
- W2045283281 hasConceptScore W2045283281C138885662 @default.
- W2045283281 hasConceptScore W2045283281C14394260 @default.
- W2045283281 hasConceptScore W2045283281C148483581 @default.
- W2045283281 hasConceptScore W2045283281C153180895 @default.
- W2045283281 hasConceptScore W2045283281C154945302 @default.
- W2045283281 hasConceptScore W2045283281C155281189 @default.
- W2045283281 hasConceptScore W2045283281C173608175 @default.
- W2045283281 hasConceptScore W2045283281C17744445 @default.
- W2045283281 hasConceptScore W2045283281C199539241 @default.
- W2045283281 hasConceptScore W2045283281C202444582 @default.
- W2045283281 hasConceptScore W2045283281C2776359362 @default.
- W2045283281 hasConceptScore W2045283281C2776401178 @default.
- W2045283281 hasConceptScore W2045283281C32834561 @default.
- W2045283281 hasConceptScore W2045283281C33923547 @default.
- W2045283281 hasConceptScore W2045283281C41008148 @default.
- W2045283281 hasConceptScore W2045283281C41681595 @default.
- W2045283281 hasConceptScore W2045283281C41895202 @default.
- W2045283281 hasConceptScore W2045283281C51432778 @default.
- W2045283281 hasConceptScore W2045283281C59404180 @default.
- W2045283281 hasConceptScore W2045283281C60321788 @default.
- W2045283281 hasConceptScore W2045283281C84392682 @default.
- W2045283281 hasConceptScore W2045283281C94625758 @default.
- W2045283281 hasLocation W20452832811 @default.