Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045283962> ?p ?o ?g. }
- W2045283962 endingPage "1549" @default.
- W2045283962 startingPage "1538" @default.
- W2045283962 abstract "This paper addresses the approximate optimal control problem for a class of parabolic partial differential equation (PDE) systems with nonlinear spatial differential operators. An approximate optimal control design method is proposed on the basis of the empirical eigenfunctions (EEFs) and neural network (NN). First, based on the data collected from the PDE system, the Karhunen-Loève decomposition is used to compute the EEFs. With those EEFs, the PDE system is formulated as a high-order ordinary differential equation (ODE) system. To further reduce its dimension, the singular perturbation (SP) technique is employed to derive a reduced-order model (ROM), which can accurately describe the dominant dynamics of the PDE system. Second, the Hamilton-Jacobi-Bellman (HJB) method is applied to synthesize an optimal controller based on the ROM, where the closed-loop asymptotic stability of the high-order ODE system can be guaranteed by the SP theory. By dividing the optimal control law into two parts, the linear part is obtained by solving an algebraic Riccati equation, and a new type of HJB-like equation is derived for designing the nonlinear part. Third, a control update strategy based on successive approximation is proposed to solve the HJB-like equation, and its convergence is proved. Furthermore, an NN approach is used to approximate the cost function. Finally, we apply the developed approximate optimal control method to a diffusion-reaction process with a nonlinear spatial operator, and the simulation results illustrate its effectiveness." @default.
- W2045283962 created "2016-06-24" @default.
- W2045283962 creator A5000266144 @default.
- W2045283962 creator A5012004938 @default.
- W2045283962 date "2012-12-01" @default.
- W2045283962 modified "2023-09-26" @default.
- W2045283962 title "Approximate Optimal Control Design for Nonlinear One-Dimensional Parabolic PDE Systems Using Empirical Eigenfunctions and Neural Network" @default.
- W2045283962 cites W1492186721 @default.
- W2045283962 cites W1528796636 @default.
- W2045283962 cites W1538686203 @default.
- W2045283962 cites W1579236455 @default.
- W2045283962 cites W1971361435 @default.
- W2045283962 cites W1984474823 @default.
- W2045283962 cites W1997138061 @default.
- W2045283962 cites W2008626900 @default.
- W2045283962 cites W2011581571 @default.
- W2045283962 cites W2014158063 @default.
- W2045283962 cites W2017154459 @default.
- W2045283962 cites W2019464757 @default.
- W2045283962 cites W2020808853 @default.
- W2045283962 cites W2029382655 @default.
- W2045283962 cites W2040278456 @default.
- W2045283962 cites W2046162386 @default.
- W2045283962 cites W2047090868 @default.
- W2045283962 cites W2057484415 @default.
- W2045283962 cites W2077763222 @default.
- W2045283962 cites W2082283639 @default.
- W2045283962 cites W2083283377 @default.
- W2045283962 cites W2084378698 @default.
- W2045283962 cites W2085632315 @default.
- W2045283962 cites W2093831009 @default.
- W2045283962 cites W2098035803 @default.
- W2045283962 cites W2103284380 @default.
- W2045283962 cites W2108286682 @default.
- W2045283962 cites W2110357265 @default.
- W2045283962 cites W2112061324 @default.
- W2045283962 cites W2112103082 @default.
- W2045283962 cites W2136064843 @default.
- W2045283962 cites W2137092694 @default.
- W2045283962 cites W2140563796 @default.
- W2045283962 cites W2145519197 @default.
- W2045283962 cites W2150676264 @default.
- W2045283962 cites W2151966330 @default.
- W2045283962 cites W2154868061 @default.
- W2045283962 cites W2169096497 @default.
- W2045283962 cites W4253091510 @default.
- W2045283962 cites W4298228534 @default.
- W2045283962 doi "https://doi.org/10.1109/tsmcb.2012.2194781" @default.
- W2045283962 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22588610" @default.
- W2045283962 hasPublicationYear "2012" @default.
- W2045283962 type Work @default.
- W2045283962 sameAs 2045283962 @default.
- W2045283962 citedByCount "63" @default.
- W2045283962 countsByYear W20452839622012 @default.
- W2045283962 countsByYear W20452839622014 @default.
- W2045283962 countsByYear W20452839622015 @default.
- W2045283962 countsByYear W20452839622016 @default.
- W2045283962 countsByYear W20452839622017 @default.
- W2045283962 countsByYear W20452839622018 @default.
- W2045283962 countsByYear W20452839622019 @default.
- W2045283962 countsByYear W20452839622020 @default.
- W2045283962 countsByYear W20452839622021 @default.
- W2045283962 countsByYear W20452839622022 @default.
- W2045283962 crossrefType "journal-article" @default.
- W2045283962 hasAuthorship W2045283962A5000266144 @default.
- W2045283962 hasAuthorship W2045283962A5012004938 @default.
- W2045283962 hasConcept C119857082 @default.
- W2045283962 hasConcept C121332964 @default.
- W2045283962 hasConcept C126255220 @default.
- W2045283962 hasConcept C128803854 @default.
- W2045283962 hasConcept C134306372 @default.
- W2045283962 hasConcept C13847129 @default.
- W2045283962 hasConcept C154945302 @default.
- W2045283962 hasConcept C158622935 @default.
- W2045283962 hasConcept C158693339 @default.
- W2045283962 hasConcept C196978813 @default.
- W2045283962 hasConcept C2775924081 @default.
- W2045283962 hasConcept C28826006 @default.
- W2045283962 hasConcept C33923547 @default.
- W2045283962 hasConcept C34862557 @default.
- W2045283962 hasConcept C41008148 @default.
- W2045283962 hasConcept C45473103 @default.
- W2045283962 hasConcept C47446073 @default.
- W2045283962 hasConcept C50644808 @default.
- W2045283962 hasConcept C51544822 @default.
- W2045283962 hasConcept C62520636 @default.
- W2045283962 hasConcept C78045399 @default.
- W2045283962 hasConcept C91575142 @default.
- W2045283962 hasConcept C93779851 @default.
- W2045283962 hasConceptScore W2045283962C119857082 @default.
- W2045283962 hasConceptScore W2045283962C121332964 @default.
- W2045283962 hasConceptScore W2045283962C126255220 @default.
- W2045283962 hasConceptScore W2045283962C128803854 @default.
- W2045283962 hasConceptScore W2045283962C134306372 @default.
- W2045283962 hasConceptScore W2045283962C13847129 @default.
- W2045283962 hasConceptScore W2045283962C154945302 @default.
- W2045283962 hasConceptScore W2045283962C158622935 @default.
- W2045283962 hasConceptScore W2045283962C158693339 @default.