Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045331152> ?p ?o ?g. }
- W2045331152 endingPage "33" @default.
- W2045331152 startingPage "23" @default.
- W2045331152 abstract "In this communication, we evaluate the performance of the relevance vector machine (RVM) for the estimation of biophysical parameters from remote sensing data. For illustration purposes, we focus on the estimation of chlorophyll-a concentrations from remote sensing reflectance just above the ocean surface. A variety of bio-optical algorithms have been developed to relate measurements of ocean radiance to in situ concentrations of phytoplankton pigments, and ultimately most of these algorithms demonstrate the potential of quantifying chlorophyll-a concentrations accurately from multispectral satellite ocean color data. Both satellite-derived data and in situ measurements are subject to high levels of uncertainty. In this context, robust and stable non-linear regression methods that provide inverse models are desirable. Lately, the use of the support vector regression (SVR) has produced good results in inversion problems, improving state-of-the-art neural networks. However, the SVR has some deficiencies, which could be theoretically alleviated by the RVM. In this paper, performance of the RVM is evaluated in terms of accuracy and bias of the estimations, sparseness of the solutions, robustness to low number of training samples, and computational burden. In addition, some theoretical issues are discussed, such as the sensitivity to training parameters setting, kernel selection, and confidence intervals on the predictions. Results suggest that RVMs offer an excellent trade-off between accuracy and sparsity of the solution, and become less sensitive to the selection of the free parameters. A novel formulation of the RVM that incorporates prior knowledge of the problem is presented and successfully tested, providing better results than standard RVM formulations, SVRs, neural networks, and classical bio-optical models for SeaWIFS, such as Morel, CalCOFI and OC2/OC4 models." @default.
- W2045331152 created "2016-06-24" @default.
- W2045331152 creator A5016497311 @default.
- W2045331152 creator A5039052506 @default.
- W2045331152 creator A5041744843 @default.
- W2045331152 creator A5051693047 @default.
- W2045331152 creator A5078307013 @default.
- W2045331152 creator A5085480844 @default.
- W2045331152 date "2006-11-15" @default.
- W2045331152 modified "2023-10-14" @default.
- W2045331152 title "Retrieval of oceanic chlorophyll concentration with relevance vector machines" @default.
- W2045331152 cites W1520950463 @default.
- W2045331152 cites W1560724230 @default.
- W2045331152 cites W1564026136 @default.
- W2045331152 cites W1601740268 @default.
- W2045331152 cites W1633751774 @default.
- W2045331152 cites W1648445109 @default.
- W2045331152 cites W1680579736 @default.
- W2045331152 cites W1916111197 @default.
- W2045331152 cites W1964357740 @default.
- W2045331152 cites W1988886499 @default.
- W2045331152 cites W2007101051 @default.
- W2045331152 cites W2013058191 @default.
- W2045331152 cites W2017900475 @default.
- W2045331152 cites W2024643119 @default.
- W2045331152 cites W2040649777 @default.
- W2045331152 cites W2042601300 @default.
- W2045331152 cites W2049633694 @default.
- W2045331152 cites W2054497277 @default.
- W2045331152 cites W2063025261 @default.
- W2045331152 cites W2082802513 @default.
- W2045331152 cites W2086794125 @default.
- W2045331152 cites W2101709642 @default.
- W2045331152 cites W2103914835 @default.
- W2045331152 cites W2104269704 @default.
- W2045331152 cites W2115408897 @default.
- W2045331152 cites W2118286367 @default.
- W2045331152 cites W2120647186 @default.
- W2045331152 cites W2137512539 @default.
- W2045331152 cites W2140939548 @default.
- W2045331152 cites W2148269537 @default.
- W2045331152 cites W2148603752 @default.
- W2045331152 cites W2156418736 @default.
- W2045331152 cites W2312997001 @default.
- W2045331152 cites W2505106624 @default.
- W2045331152 cites W2617443499 @default.
- W2045331152 cites W3012317737 @default.
- W2045331152 cites W4986281 @default.
- W2045331152 cites W91932901 @default.
- W2045331152 doi "https://doi.org/10.1016/j.rse.2006.06.004" @default.
- W2045331152 hasPublicationYear "2006" @default.
- W2045331152 type Work @default.
- W2045331152 sameAs 2045331152 @default.
- W2045331152 citedByCount "92" @default.
- W2045331152 countsByYear W20453311522012 @default.
- W2045331152 countsByYear W20453311522013 @default.
- W2045331152 countsByYear W20453311522014 @default.
- W2045331152 countsByYear W20453311522015 @default.
- W2045331152 countsByYear W20453311522016 @default.
- W2045331152 countsByYear W20453311522017 @default.
- W2045331152 countsByYear W20453311522018 @default.
- W2045331152 countsByYear W20453311522019 @default.
- W2045331152 countsByYear W20453311522020 @default.
- W2045331152 countsByYear W20453311522021 @default.
- W2045331152 countsByYear W20453311522022 @default.
- W2045331152 countsByYear W20453311522023 @default.
- W2045331152 crossrefType "journal-article" @default.
- W2045331152 hasAuthorship W2045331152A5016497311 @default.
- W2045331152 hasAuthorship W2045331152A5039052506 @default.
- W2045331152 hasAuthorship W2045331152A5041744843 @default.
- W2045331152 hasAuthorship W2045331152A5051693047 @default.
- W2045331152 hasAuthorship W2045331152A5078307013 @default.
- W2045331152 hasAuthorship W2045331152A5085480844 @default.
- W2045331152 hasConcept C104317684 @default.
- W2045331152 hasConcept C109007969 @default.
- W2045331152 hasConcept C11413529 @default.
- W2045331152 hasConcept C119857082 @default.
- W2045331152 hasConcept C12267149 @default.
- W2045331152 hasConcept C127313418 @default.
- W2045331152 hasConcept C134306372 @default.
- W2045331152 hasConcept C135252773 @default.
- W2045331152 hasConcept C14948415 @default.
- W2045331152 hasConcept C151730666 @default.
- W2045331152 hasConcept C154945302 @default.
- W2045331152 hasConcept C173163844 @default.
- W2045331152 hasConcept C185592680 @default.
- W2045331152 hasConcept C1893757 @default.
- W2045331152 hasConcept C23690007 @default.
- W2045331152 hasConcept C2779343474 @default.
- W2045331152 hasConcept C33923547 @default.
- W2045331152 hasConcept C39432304 @default.
- W2045331152 hasConcept C41008148 @default.
- W2045331152 hasConcept C55493867 @default.
- W2045331152 hasConcept C62649853 @default.
- W2045331152 hasConcept C63479239 @default.
- W2045331152 hasConceptScore W2045331152C104317684 @default.
- W2045331152 hasConceptScore W2045331152C109007969 @default.
- W2045331152 hasConceptScore W2045331152C11413529 @default.