Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045362471> ?p ?o ?g. }
- W2045362471 endingPage "524" @default.
- W2045362471 startingPage "517" @default.
- W2045362471 abstract "Machine learning methods have been applied to classifying fMRI scans by studying locations in the brain that exhibit temporal intensity variation between groups, frequently reporting classification accuracy of 90% or better. Although empirical results are quite favorable, one might doubt the ability of classification methods to withstand changes in task ordering and the reproducibility of activation patterns over runs, and question how much of the classification machines' power is due to artifactual noise versus genuine neurological signal. To examine the true strength and power of machine learning classifiers we create and then deconstruct a classifier to examine its sensitivity to physiological noise, task reordering, and across-scan classification ability. The models are trained and tested both within and across runs to assess stability and reproducibility across conditions. We demonstrate the use of independent components analysis for both feature extraction and artifact removal and show that removal of such artifacts can reduce predictive accuracy even when data has been cleaned in the preprocessing stages. We demonstrate how mistakes in the feature selection process can cause the cross-validation error seen in publication to be a biased estimate of the testing error seen in practice and measure this bias by purposefully making flawed models. We discuss other ways to introduce bias and the statistical assumptions lying behind the data and model themselves. Finally we discuss the complications in drawing inference from the smaller sample sizes typically seen in fMRI studies, the effects of small or unbalanced samples on the Type 1 and Type 2 error rates, and how publication bias can give a false confidence of the power of such methods. Collectively this work identifies challenges specific to fMRI classification and methods affecting the stability of models." @default.
- W2045362471 created "2016-06-24" @default.
- W2045362471 creator A5012848328 @default.
- W2045362471 creator A5020699510 @default.
- W2045362471 creator A5040496380 @default.
- W2045362471 creator A5063830894 @default.
- W2045362471 creator A5075988874 @default.
- W2045362471 date "2011-05-01" @default.
- W2045362471 modified "2023-10-17" @default.
- W2045362471 title "Common component classification: What can we learn from machine learning?" @default.
- W2045362471 cites W1511061317 @default.
- W2045362471 cites W1631913055 @default.
- W2045362471 cites W1969978994 @default.
- W2045362471 cites W1982716565 @default.
- W2045362471 cites W1985327120 @default.
- W2045362471 cites W2006096283 @default.
- W2045362471 cites W2016444985 @default.
- W2045362471 cites W2020274529 @default.
- W2045362471 cites W2029005703 @default.
- W2045362471 cites W2031235352 @default.
- W2045362471 cites W2037557484 @default.
- W2045362471 cites W2043235003 @default.
- W2045362471 cites W2045024342 @default.
- W2045362471 cites W2080622748 @default.
- W2045362471 cites W2093122691 @default.
- W2045362471 cites W2099192642 @default.
- W2045362471 cites W2101219820 @default.
- W2045362471 cites W2106578604 @default.
- W2045362471 cites W2107386336 @default.
- W2045362471 cites W2116799974 @default.
- W2045362471 cites W2130654277 @default.
- W2045362471 cites W2136479525 @default.
- W2045362471 cites W2137048847 @default.
- W2045362471 cites W2140709006 @default.
- W2045362471 cites W2146594014 @default.
- W2045362471 cites W2146791205 @default.
- W2045362471 cites W2156286274 @default.
- W2045362471 cites W2158485497 @default.
- W2045362471 cites W2911964244 @default.
- W2045362471 cites W652860987 @default.
- W2045362471 cites W86288911 @default.
- W2045362471 cites W2025472057 @default.
- W2045362471 doi "https://doi.org/10.1016/j.neuroimage.2010.05.065" @default.
- W2045362471 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2966513" @default.
- W2045362471 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20599621" @default.
- W2045362471 hasPublicationYear "2011" @default.
- W2045362471 type Work @default.
- W2045362471 sameAs 2045362471 @default.
- W2045362471 citedByCount "3" @default.
- W2045362471 countsByYear W20453624712016 @default.
- W2045362471 countsByYear W20453624712017 @default.
- W2045362471 countsByYear W20453624712022 @default.
- W2045362471 crossrefType "journal-article" @default.
- W2045362471 hasAuthorship W2045362471A5012848328 @default.
- W2045362471 hasAuthorship W2045362471A5020699510 @default.
- W2045362471 hasAuthorship W2045362471A5040496380 @default.
- W2045362471 hasAuthorship W2045362471A5063830894 @default.
- W2045362471 hasAuthorship W2045362471A5075988874 @default.
- W2045362471 hasBestOaLocation W20453624712 @default.
- W2045362471 hasConcept C105795698 @default.
- W2045362471 hasConcept C119857082 @default.
- W2045362471 hasConcept C129848803 @default.
- W2045362471 hasConcept C153180895 @default.
- W2045362471 hasConcept C154945302 @default.
- W2045362471 hasConcept C2776214188 @default.
- W2045362471 hasConcept C2779010991 @default.
- W2045362471 hasConcept C33923547 @default.
- W2045362471 hasConcept C34736171 @default.
- W2045362471 hasConcept C40696583 @default.
- W2045362471 hasConcept C41008148 @default.
- W2045362471 hasConcept C95623464 @default.
- W2045362471 hasConceptScore W2045362471C105795698 @default.
- W2045362471 hasConceptScore W2045362471C119857082 @default.
- W2045362471 hasConceptScore W2045362471C129848803 @default.
- W2045362471 hasConceptScore W2045362471C153180895 @default.
- W2045362471 hasConceptScore W2045362471C154945302 @default.
- W2045362471 hasConceptScore W2045362471C2776214188 @default.
- W2045362471 hasConceptScore W2045362471C2779010991 @default.
- W2045362471 hasConceptScore W2045362471C33923547 @default.
- W2045362471 hasConceptScore W2045362471C34736171 @default.
- W2045362471 hasConceptScore W2045362471C40696583 @default.
- W2045362471 hasConceptScore W2045362471C41008148 @default.
- W2045362471 hasConceptScore W2045362471C95623464 @default.
- W2045362471 hasFunder F4320332161 @default.
- W2045362471 hasIssue "2" @default.
- W2045362471 hasLocation W20453624711 @default.
- W2045362471 hasLocation W20453624712 @default.
- W2045362471 hasLocation W20453624713 @default.
- W2045362471 hasLocation W20453624714 @default.
- W2045362471 hasOpenAccess W2045362471 @default.
- W2045362471 hasPrimaryLocation W20453624711 @default.
- W2045362471 hasRelatedWork W1502614025 @default.
- W2045362471 hasRelatedWork W2001652754 @default.
- W2045362471 hasRelatedWork W2045362471 @default.
- W2045362471 hasRelatedWork W2066259560 @default.
- W2045362471 hasRelatedWork W2262783296 @default.
- W2045362471 hasRelatedWork W2380927352 @default.
- W2045362471 hasRelatedWork W2391959412 @default.