Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045367007> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2045367007 endingPage "222" @default.
- W2045367007 startingPage "222" @default.
- W2045367007 abstract "The concept of linearization is fundamental for theory, applications, and spectral computations related to matrix polynomials. However, recent research on several important classes of structured matrix polynomials arising in applications has revealed that the strategy of using linearizations to develop structure-preserving numerical algorithms that compute the eigenvalues of structured matrix polynomials can be too restrictive, because some structured polynomials do not have any linearization with the same structure. This phenomenon strongly suggests that linearizations should sometimes be replaced by other low degree matrix polynomials in applied numerical computations. Motivated by this fact, we introduce equivalence relations that allow the possibility of matrix polynomials (with coefficients in an arbitrary field) to be equivalent, with the same spectral structure, but have different sizes and degrees. These equivalence relations are directly modeled on the notion of linearization, and consequently inherit the simplicity, applicability, and most relevant properties of linearizations; simultaneously, though, they are much more flexible in the possible degrees of equivalent polynomials. This flexibility allows us to define in a unified way the notions of quadratification and ℓ-ification, to introduce the concept of companion form of arbitrary degree, and to provide concrete and simple examples of these notions that generalize in a natural and smooth way the classical first and second Frobenius companion forms. The properties of ℓ-ifications are studied in depth; in this process a fundamental result on matrix polynomials, the “Index Sum Theorem”, is recovered and extended to arbitrary fields. Although this result is known in the systems theory literature for real matrix polynomials, it has remained unnoticed by many researchers. It establishes that the sum of the (finite and infinite) partial multiplicities, together with the (left and right) minimal indices of any matrix polynomial is equal to the rank times the degree of the polynomial. The “Index Sum Theorem” turns out to be a key tool for obtaining a number of significant results: on the possible sizes and degrees of ℓ-ifications and companion forms, on the minimal index preservation properties of companion forms of arbitrary degree, as well as on obstructions to the existence of structured companion forms for structured matrix polynomials of even degree. This paper presents many new results, blended together with results already known in the literature but extended here to the most general setting of matrix polynomials of arbitrary sizes and degrees over arbitrary fields. Therefore we have written the paper in an expository and self-contained style that makes it accessible to a wide variety of readers." @default.
- W2045367007 created "2016-06-24" @default.
- W2045367007 creator A5081592004 @default.
- W2045367007 date "1987-06-01" @default.
- W2045367007 modified "2023-09-27" @default.
- W2045367007 title "Comments on the paper of P. Gould" @default.
- W2045367007 doi "https://doi.org/10.1016/0377-2217(87)90100-7" @default.
- W2045367007 hasPublicationYear "1987" @default.
- W2045367007 type Work @default.
- W2045367007 sameAs 2045367007 @default.
- W2045367007 citedByCount "2" @default.
- W2045367007 crossrefType "journal-article" @default.
- W2045367007 hasAuthorship W2045367007A5081592004 @default.
- W2045367007 hasConcept C101044782 @default.
- W2045367007 hasConcept C106487976 @default.
- W2045367007 hasConcept C11210021 @default.
- W2045367007 hasConcept C121332964 @default.
- W2045367007 hasConcept C126352355 @default.
- W2045367007 hasConcept C134306372 @default.
- W2045367007 hasConcept C136119220 @default.
- W2045367007 hasConcept C141495983 @default.
- W2045367007 hasConcept C158622935 @default.
- W2045367007 hasConcept C158693339 @default.
- W2045367007 hasConcept C159985019 @default.
- W2045367007 hasConcept C192562407 @default.
- W2045367007 hasConcept C202444582 @default.
- W2045367007 hasConcept C2780069185 @default.
- W2045367007 hasConcept C33923547 @default.
- W2045367007 hasConcept C62520636 @default.
- W2045367007 hasConcept C90119067 @default.
- W2045367007 hasConceptScore W2045367007C101044782 @default.
- W2045367007 hasConceptScore W2045367007C106487976 @default.
- W2045367007 hasConceptScore W2045367007C11210021 @default.
- W2045367007 hasConceptScore W2045367007C121332964 @default.
- W2045367007 hasConceptScore W2045367007C126352355 @default.
- W2045367007 hasConceptScore W2045367007C134306372 @default.
- W2045367007 hasConceptScore W2045367007C136119220 @default.
- W2045367007 hasConceptScore W2045367007C141495983 @default.
- W2045367007 hasConceptScore W2045367007C158622935 @default.
- W2045367007 hasConceptScore W2045367007C158693339 @default.
- W2045367007 hasConceptScore W2045367007C159985019 @default.
- W2045367007 hasConceptScore W2045367007C192562407 @default.
- W2045367007 hasConceptScore W2045367007C202444582 @default.
- W2045367007 hasConceptScore W2045367007C2780069185 @default.
- W2045367007 hasConceptScore W2045367007C33923547 @default.
- W2045367007 hasConceptScore W2045367007C62520636 @default.
- W2045367007 hasConceptScore W2045367007C90119067 @default.
- W2045367007 hasIssue "2" @default.
- W2045367007 hasLocation W20453670071 @default.
- W2045367007 hasOpenAccess W2045367007 @default.
- W2045367007 hasPrimaryLocation W20453670071 @default.
- W2045367007 hasRelatedWork W2004329086 @default.
- W2045367007 hasRelatedWork W2104960301 @default.
- W2045367007 hasRelatedWork W2317893379 @default.
- W2045367007 hasRelatedWork W2540552231 @default.
- W2045367007 hasRelatedWork W2787968422 @default.
- W2045367007 hasRelatedWork W2955218924 @default.
- W2045367007 hasRelatedWork W2964187826 @default.
- W2045367007 hasRelatedWork W2990600953 @default.
- W2045367007 hasRelatedWork W4288284889 @default.
- W2045367007 hasRelatedWork W4320560943 @default.
- W2045367007 hasVolume "30" @default.
- W2045367007 isParatext "false" @default.
- W2045367007 isRetracted "false" @default.
- W2045367007 magId "2045367007" @default.
- W2045367007 workType "article" @default.