Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045376241> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2045376241 endingPage "566" @default.
- W2045376241 startingPage "554" @default.
- W2045376241 abstract "A new transmission line fault-classification algorithm based on half-cycle post-fault current data is presented for an advanced series-compensated transmission line equipped with a thyristor-controlled series compensator. The proposed scheme was developed with the signal feature enhancement tool of discrete wavelet packet entropy measures. The Chebyshev neural network is presented as network-growing technique for protective classification, the single-layer structure of which is a more powerful classifier that eliminates the need for complicated network design. A comparative implementation study of the multi-layer perceptron and Chebyshev neural network authenticates benefits gained by the Chebyshev neural network. To demonstrate the advantage gained by Chebyshev neural networks compared to support vector machines, a comparative study is presented with a support vector machine based classification technique. The fault datawere obtained by dynamic simulation of a sample system using the real-time power system simulator PSCAD (Manitoba HVDC Research Centre, Winnipeg, Manitoba, Canada). Extensive testing reveals the effectiveness of the Chebyshev neural network for fault classification; a comparative study brings out the superiority of the Chebyshev neural network for neural network design and implementation against the multi-layer perceptron. The Chebyshev neural network proved advantageous against support vector machines as being insensitive to the classification parameter." @default.
- W2045376241 created "2016-06-24" @default.
- W2045376241 creator A5029018943 @default.
- W2045376241 creator A5048531526 @default.
- W2045376241 creator A5089740531 @default.
- W2045376241 date "2014-03-13" @default.
- W2045376241 modified "2023-10-17" @default.
- W2045376241 title "Investigation for Improved Artificial Intelligence Techniques for Thyristor-controlled Series-compensated Transmission Line Fault Classification with Discrete Wavelet Packet Entropy Measures" @default.
- W2045376241 cites W1559390385 @default.
- W2045376241 cites W1963754887 @default.
- W2045376241 cites W1965984057 @default.
- W2045376241 cites W1966580272 @default.
- W2045376241 cites W1995397447 @default.
- W2045376241 cites W1995476676 @default.
- W2045376241 cites W2044682410 @default.
- W2045376241 cites W2048544722 @default.
- W2045376241 cites W2051475364 @default.
- W2045376241 cites W2061661854 @default.
- W2045376241 cites W2072250918 @default.
- W2045376241 cites W2081622176 @default.
- W2045376241 cites W2092395488 @default.
- W2045376241 cites W2112456350 @default.
- W2045376241 cites W2134201856 @default.
- W2045376241 cites W2153635508 @default.
- W2045376241 cites W2978725006 @default.
- W2045376241 doi "https://doi.org/10.1080/15325008.2014.880961" @default.
- W2045376241 hasPublicationYear "2014" @default.
- W2045376241 type Work @default.
- W2045376241 sameAs 2045376241 @default.
- W2045376241 citedByCount "25" @default.
- W2045376241 countsByYear W20453762412014 @default.
- W2045376241 countsByYear W20453762412015 @default.
- W2045376241 countsByYear W20453762412016 @default.
- W2045376241 countsByYear W20453762412017 @default.
- W2045376241 countsByYear W20453762412018 @default.
- W2045376241 countsByYear W20453762412019 @default.
- W2045376241 countsByYear W20453762412020 @default.
- W2045376241 countsByYear W20453762412021 @default.
- W2045376241 countsByYear W20453762412022 @default.
- W2045376241 countsByYear W20453762412023 @default.
- W2045376241 crossrefType "journal-article" @default.
- W2045376241 hasAuthorship W2045376241A5029018943 @default.
- W2045376241 hasAuthorship W2045376241A5048531526 @default.
- W2045376241 hasAuthorship W2045376241A5089740531 @default.
- W2045376241 hasConcept C11413529 @default.
- W2045376241 hasConcept C12267149 @default.
- W2045376241 hasConcept C154945302 @default.
- W2045376241 hasConcept C21424316 @default.
- W2045376241 hasConcept C31972630 @default.
- W2045376241 hasConcept C33441834 @default.
- W2045376241 hasConcept C41008148 @default.
- W2045376241 hasConcept C47432892 @default.
- W2045376241 hasConcept C50644808 @default.
- W2045376241 hasConcept C60908668 @default.
- W2045376241 hasConcept C76155785 @default.
- W2045376241 hasConceptScore W2045376241C11413529 @default.
- W2045376241 hasConceptScore W2045376241C12267149 @default.
- W2045376241 hasConceptScore W2045376241C154945302 @default.
- W2045376241 hasConceptScore W2045376241C21424316 @default.
- W2045376241 hasConceptScore W2045376241C31972630 @default.
- W2045376241 hasConceptScore W2045376241C33441834 @default.
- W2045376241 hasConceptScore W2045376241C41008148 @default.
- W2045376241 hasConceptScore W2045376241C47432892 @default.
- W2045376241 hasConceptScore W2045376241C50644808 @default.
- W2045376241 hasConceptScore W2045376241C60908668 @default.
- W2045376241 hasConceptScore W2045376241C76155785 @default.
- W2045376241 hasIssue "6" @default.
- W2045376241 hasLocation W20453762411 @default.
- W2045376241 hasOpenAccess W2045376241 @default.
- W2045376241 hasPrimaryLocation W20453762411 @default.
- W2045376241 hasRelatedWork W2078738711 @default.
- W2045376241 hasRelatedWork W2355927362 @default.
- W2045376241 hasRelatedWork W2791871403 @default.
- W2045376241 hasRelatedWork W2979979539 @default.
- W2045376241 hasRelatedWork W2992977501 @default.
- W2045376241 hasRelatedWork W3180164722 @default.
- W2045376241 hasRelatedWork W3193301557 @default.
- W2045376241 hasRelatedWork W4225307033 @default.
- W2045376241 hasRelatedWork W4361795583 @default.
- W2045376241 hasRelatedWork W4362499384 @default.
- W2045376241 hasVolume "42" @default.
- W2045376241 isParatext "false" @default.
- W2045376241 isRetracted "false" @default.
- W2045376241 magId "2045376241" @default.
- W2045376241 workType "article" @default.