Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045476736> ?p ?o ?g. }
- W2045476736 endingPage "1991" @default.
- W2045476736 startingPage "1980" @default.
- W2045476736 abstract "Chick eyes compensate for defocus imposed by spectacle lenses by making compensatory changes in eye length and choroidal thickness, a laboratory model of emmetropization. To investigate the roles of longitudinal chromatic aberration and of chromatic mechanisms in emmetropization, we examined the participation of different cone classes, and we compared the efficacy of lens compensation under monochromatic illumination with that under white light of the same illuminance to the chick eye. Chicks wore positive or negative 6D or 8D lenses on one eye for 3 days, under either blue (460 nm) or red (620 nm) light at 0.67 lux or under white light at 0.67 or 0.2 lux (all measures are corrected for chick photopic sensitivity). The illumination conditions were chosen to differentially stimulate either the short-wavelength and ultraviolet cones or the long-wavelength and double cones. Measurements are expressed as the relative change: the inter-ocular difference in the amount of change over the 3 days of lens wear. We find that under this low illumination the two components of lens compensation were differentially affected by the monochromatic illumination: in blue light lens compensation was mainly due to changes in eye length, whereas in red light lens compensation was mainly due to changes in choroidal thickness. In general, white light produced better lens compensation than monochromatic illumination. NEGATIVE LENSES: Under white light negative lenses caused an increase in eye length (60 microm) together with a decrease in choroidal thickness (-51 microm) relative to the fellow eye. Under blue light, although there was an increase in eye length (32 microm), there was no change in choroidal thickness (5 microm). In contrast, under red light there was a decrease in choroidal thickness (-62 microm) but no increase in eye length (8 microm). Relative ocular elongation was the same in white and monochromatic light. POSITIVE LENSES: Under white light positive lenses caused a decrease in eye length (-142 microm) together with an increase in choroidal thickness (68 microm) relative to the fellow eye. Under blue light, there was a decrease in eye length (-64 microm), but no change in choroidal thickness (2 microm). In contrast, under red light there was an increase (90 microm) in choroidal thickness but less of a decrease (-36 microm) in eye length. Lens compensation by inhibition of ocular elongation was less effective under monochromatic illumination than under white light (white v red: p=0.003; white v blue p=.014). The differential effects of red and blue light on the choroidal and ocular length compensatory responses suggest that they are driven by different proportions of the cone-types, implying that, although chromatic contrast is not essential for lens compensation and presumably for emmetropization as well, the retinal substrates exist for utilizing chromatic contrast in these compensatory responses. The generally better lens compensation in white than monochromatic illumination suggests that longitudinal chromatic aberration may be used in lens compensation." @default.
- W2045476736 created "2016-06-24" @default.
- W2045476736 creator A5041138948 @default.
- W2045476736 creator A5072542417 @default.
- W2045476736 date "2008-09-01" @default.
- W2045476736 modified "2023-10-16" @default.
- W2045476736 title "Cone signals for spectacle-lens compensation: Differential responses to short and long wavelengths" @default.
- W2045476736 cites W1781414703 @default.
- W2045476736 cites W1965144335 @default.
- W2045476736 cites W1982073366 @default.
- W2045476736 cites W1983274075 @default.
- W2045476736 cites W1994871367 @default.
- W2045476736 cites W1998789080 @default.
- W2045476736 cites W2000497693 @default.
- W2045476736 cites W2006335585 @default.
- W2045476736 cites W2007374394 @default.
- W2045476736 cites W2008126653 @default.
- W2045476736 cites W2012537098 @default.
- W2045476736 cites W2021140167 @default.
- W2045476736 cites W2029662633 @default.
- W2045476736 cites W2031341772 @default.
- W2045476736 cites W2034820019 @default.
- W2045476736 cites W2043281733 @default.
- W2045476736 cites W2045383744 @default.
- W2045476736 cites W2046952609 @default.
- W2045476736 cites W2047157779 @default.
- W2045476736 cites W2056555533 @default.
- W2045476736 cites W2063545011 @default.
- W2045476736 cites W2065279055 @default.
- W2045476736 cites W2067666500 @default.
- W2045476736 cites W2073733157 @default.
- W2045476736 cites W2075808504 @default.
- W2045476736 cites W2077507924 @default.
- W2045476736 cites W2079249255 @default.
- W2045476736 cites W2080452959 @default.
- W2045476736 cites W2080694952 @default.
- W2045476736 cites W2084835783 @default.
- W2045476736 cites W2087131933 @default.
- W2045476736 cites W2087690559 @default.
- W2045476736 cites W2088048148 @default.
- W2045476736 cites W2088574024 @default.
- W2045476736 cites W2089703911 @default.
- W2045476736 cites W2095466467 @default.
- W2045476736 cites W2103820316 @default.
- W2045476736 cites W2110526934 @default.
- W2045476736 cites W2121777623 @default.
- W2045476736 cites W2129022768 @default.
- W2045476736 cites W2137332430 @default.
- W2045476736 cites W2142924793 @default.
- W2045476736 cites W2149927325 @default.
- W2045476736 cites W2157176408 @default.
- W2045476736 cites W2166777034 @default.
- W2045476736 cites W2167046892 @default.
- W2045476736 cites W4239349724 @default.
- W2045476736 doi "https://doi.org/10.1016/j.visres.2008.06.003" @default.
- W2045476736 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2790044" @default.
- W2045476736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18585403" @default.
- W2045476736 hasPublicationYear "2008" @default.
- W2045476736 type Work @default.
- W2045476736 sameAs 2045476736 @default.
- W2045476736 citedByCount "76" @default.
- W2045476736 countsByYear W20454767362012 @default.
- W2045476736 countsByYear W20454767362013 @default.
- W2045476736 countsByYear W20454767362014 @default.
- W2045476736 countsByYear W20454767362015 @default.
- W2045476736 countsByYear W20454767362016 @default.
- W2045476736 countsByYear W20454767362017 @default.
- W2045476736 countsByYear W20454767362018 @default.
- W2045476736 countsByYear W20454767362019 @default.
- W2045476736 countsByYear W20454767362020 @default.
- W2045476736 countsByYear W20454767362021 @default.
- W2045476736 countsByYear W20454767362022 @default.
- W2045476736 countsByYear W20454767362023 @default.
- W2045476736 crossrefType "journal-article" @default.
- W2045476736 hasAuthorship W2045476736A5041138948 @default.
- W2045476736 hasAuthorship W2045476736A5072542417 @default.
- W2045476736 hasBestOaLocation W20454767361 @default.
- W2045476736 hasConcept C118487528 @default.
- W2045476736 hasConcept C119767625 @default.
- W2045476736 hasConcept C120665830 @default.
- W2045476736 hasConcept C121332964 @default.
- W2045476736 hasConcept C15336307 @default.
- W2045476736 hasConcept C196956537 @default.
- W2045476736 hasConcept C2777093970 @default.
- W2045476736 hasConcept C36365805 @default.
- W2045476736 hasConcept C40833965 @default.
- W2045476736 hasConcept C54497739 @default.
- W2045476736 hasConcept C61674017 @default.
- W2045476736 hasConcept C6260449 @default.
- W2045476736 hasConcept C71924100 @default.
- W2045476736 hasConcept C87367554 @default.
- W2045476736 hasConceptScore W2045476736C118487528 @default.
- W2045476736 hasConceptScore W2045476736C119767625 @default.
- W2045476736 hasConceptScore W2045476736C120665830 @default.
- W2045476736 hasConceptScore W2045476736C121332964 @default.
- W2045476736 hasConceptScore W2045476736C15336307 @default.
- W2045476736 hasConceptScore W2045476736C196956537 @default.
- W2045476736 hasConceptScore W2045476736C2777093970 @default.