Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045479963> ?p ?o ?g. }
- W2045479963 endingPage "9377" @default.
- W2045479963 startingPage "9371" @default.
- W2045479963 abstract "We show that unsaturated fatty acids (FAs) bind reversibly and with high affinity to a heterocomplex of 34 kDa (FA-p34) formed by the non-covalent association of two calcium-binding proteins of the S100 family: MRP8 (S100A8) and MRP14 (S100A9). Fatty acid-competition studies on the [3H]oleic acid·FA-p34-complex show that oleic, α-linoleic, γ-linolenic, and arachidonic acids have IC50 values of about 1 μM, whereas palmitic and stearic acids are poor competitors. The binding of arachidonic acid is saturable with a single class of binding site per FA-p34, and a dissociation constant (Kd) of 0.13 μM is calculated. The individual subunits MRP8 and MRP14 show no binding properties for fatty acids, whereas a p34 complex reconstituted in vitro by the recombinant molecules exhibits binding properties, suggesting that the fatty acid-binding site of FA-p34 is created through heterocomplex formation. Furthermore, we demonstrate that lowering free Ca2+ levels to 16 nM results in a loss of the fatty acid-binding capacity of purified FA-p34. In calcium-induced differentiating keratinocytes, the amounts of FA-p34 are increased in the particulate (2.0 ± 0.5 pmol of [3H]oleic acid/mg protein) and in the cytosolic (4.5 ± 0.6 pmol of [3H]oleic acid/mg protein) fractions, whereas no FA-p34 can be detected in non-differentiated cultured keratinocytes.In abnormally differentiated keratinocytes (psoriasis) and in human polymorphonuclear leukocytes, FA-p34 is highly expressed (31.35 ± 1.6 and 349.8 ± 17.9 pmol of [3H]oleic acid/mg protein, respectively), pointing toward a role for this heteromer in mediating effects of unsaturated fatty acids in a calcium-dependent way during cell differentiation and/or inflammation. We show that unsaturated fatty acids (FAs) bind reversibly and with high affinity to a heterocomplex of 34 kDa (FA-p34) formed by the non-covalent association of two calcium-binding proteins of the S100 family: MRP8 (S100A8) and MRP14 (S100A9). Fatty acid-competition studies on the [3H]oleic acid·FA-p34-complex show that oleic, α-linoleic, γ-linolenic, and arachidonic acids have IC50 values of about 1 μM, whereas palmitic and stearic acids are poor competitors. The binding of arachidonic acid is saturable with a single class of binding site per FA-p34, and a dissociation constant (Kd) of 0.13 μM is calculated. The individual subunits MRP8 and MRP14 show no binding properties for fatty acids, whereas a p34 complex reconstituted in vitro by the recombinant molecules exhibits binding properties, suggesting that the fatty acid-binding site of FA-p34 is created through heterocomplex formation. Furthermore, we demonstrate that lowering free Ca2+ levels to 16 nM results in a loss of the fatty acid-binding capacity of purified FA-p34. In calcium-induced differentiating keratinocytes, the amounts of FA-p34 are increased in the particulate (2.0 ± 0.5 pmol of [3H]oleic acid/mg protein) and in the cytosolic (4.5 ± 0.6 pmol of [3H]oleic acid/mg protein) fractions, whereas no FA-p34 can be detected in non-differentiated cultured keratinocytes. In abnormally differentiated keratinocytes (psoriasis) and in human polymorphonuclear leukocytes, FA-p34 is highly expressed (31.35 ± 1.6 and 349.8 ± 17.9 pmol of [3H]oleic acid/mg protein, respectively), pointing toward a role for this heteromer in mediating effects of unsaturated fatty acids in a calcium-dependent way during cell differentiation and/or inflammation. INTRODUCTIONFatty acids (FAs) 1The abbreviations used are: FAfatty acidFABPfatty acid-binding proteinmAbmouse monoclonal antibodyPBSphosphate-buffered salinePAGEpolyacrylamide gel electrophoresisOAoleic acidrMRPrecombinant MRPp34protein complex of 34 kDa composed of MRP8 and MRP14FA-p34p34 able to bind fatty acidMRP8/14various protein complexes formed of MRP8 and MRP14PMNLpolymorphonuclear leukocytesHSEPFhigh salt extractable protein fraction are implicated in energy delivery, membrane synthesis, in the lipid barrier function of epidermis, in inflammation, and they modulate gene expression (1Feingold K.R. Adv. Lipid Res. 1991; 24: 57-82Google Scholar, 2Forman B.M. Tontonoz P. Chen J. Brun R.P. Spiegelman B.M. Evans R.M. Cell. 1995; 83: 803-812Google Scholar, 3Kliewer S.A. Lenhard J.M. Wilson T.M. Patel I. Morris D.C. Lehmann J.M. Cell. 1995; 83: 813-819Google Scholar). FAs are hydrophobic, labile molecules forming poor-soluble complexes with intracellular calcium ions, which are required for keratinocyte differentiation. Therefore, FAs need to be solubilized, stabilized, and translocated by specific carrier proteins (4Veerkamp J.H. Proc. Nutr. Soc. 1995; 54: 23-37Google Scholar). Three distinct families of lipid-binding proteins, i.e. extracellular albumin, the cytoplasmic fatty acid-binding proteins (FABPs), and the peroxisome proliferator-activated nuclear receptors (2Forman B.M. Tontonoz P. Chen J. Brun R.P. Spiegelman B.M. Evans R.M. Cell. 1995; 83: 803-812Google Scholar, 3Kliewer S.A. Lenhard J.M. Wilson T.M. Patel I. Morris D.C. Lehmann J.M. Cell. 1995; 83: 813-819Google Scholar) are thought to mediate the biological activities of FAs. Skin represents a very active lipid-synthesizing tissue in mammals. Two recent reports describe that human keratinocytes express the epidermal FABP, which is highly up-regulated in the hyperproliferative and inflammatory skin disease psoriasis (5Madsen P. Rasmussen H.H. Leffers H. Honoré B. Celis J.E. J. Invest. Dermatol. 1992; 99: 299-305Abstract Full Text PDF Google Scholar, 6Siegenthaler G. Hotz R. Chatellard-Gruaz D. Didierjean L. Hellman U. Saurat J.H. Biochem. J. 1994; 302: 363-371Google Scholar, 7Masouyé I. Saurat J.-H. Siegenthaler G. Dermatology. 1996; 192: 208-213Google Scholar). The epidermis lacks the Δ5- and Δ6-desaturases (8Chapkin R.S. Ziboh V.A. Marcelo C.L. J. Lipid. Res. 1986; 27: 945-954Google Scholar), and, therefore, essential FAs like linoleic and arachidonic acid must be acquired from circulation. E-FABP binds stearic, oleic, and linoleic acid but has no affinity for arachidonic acid and a very low affinity for the nearby precursor, linolenic acid (6Siegenthaler G. Hotz R. Chatellard-Gruaz D. Didierjean L. Hellman U. Saurat J.H. Biochem. J. 1994; 302: 363-371Google Scholar). Since no other FABPs have been detected in keratinocytes so far, we investigated whether a carrier protein, capable to bind unsaturated fatty acids like linolenic and arachidonic acid, might exist in psoriatic skin and cultured human keratinocytes.We characterized a fatty acid-binding heteromer of 34 kDa (FA-p34) isolated from human keratinocytes, which is composed of MRP8 (also referred to as cystic fibrosis antigen, the L1 light chain, p8, calgranulin A, S100A8) and MRP14 (L1 heavy chain, p14, calgranulin B, S100A9) (for a review, see 9Hessian P.A. Edgeworth J. Hogg N. J. Leukocyte Biol. 1993; 53: 197-204Google Scholar). These proteins belong to the S100 family of Ca2+-binding proteins (reviewed in 10Kligman D. Hilt D.C. Trends Biochem. Sci. 1988; 13: 437-447Google Scholar), and both molecules are highly up-regulated in psoriatic skin (5Madsen P. Rasmussen H.H. Leffers H. Honoré B. Celis J.E. J. Invest. Dermatol. 1992; 99: 299-305Abstract Full Text PDF Google Scholar, 11Gabrielsen T.O. Dale J. Brandtzaeg P. Hoel P.S. Fagerhol M.K. Larsen T.E. Thune P.O. J. Am. Acad. Dermatol. 1986; 15: 173-179Google Scholar, 12Saintigny G. Schmidt R. Shroot B. Juhlin L. Reichert U. Michel S. J. Invest. Dermatol. 1992; 99: 639-644Google Scholar, 13Wilkinson M.M. Busuttil A. Hayward C. Brock D.J.H. Dorin J.R. Van Heyningen V. J. Cell Sci. 1988; 91: 221-230Google Scholar, 14Brandtzaeg P. Dale I. Fagerhol M.K. Am. J. Clin. Pathol. 1987; 87: 700-707Google Scholar). Furthermore, for both molecules several post-translational modifications and the formation of high molecular weight complexes in vivo have been reported (15Edgeworth J. Gorman M. Bennett R. Freemont P. Hogg N. J. Biol. Chem. 1991; 266: 7706-7713Google Scholar, 16Raftery M.J. Harrison C.A. Alewood P. Jones A. Geczy C.L. Biochem. J. 1996; 316: 285-293Google Scholar, 17Guignard F. Mauel J. Markert M. Eur. J. Biochem. 1996; 241: 265-271Google Scholar, 18Teigelkamp S. Bhardwaj R.S. Roth J. Meinardus-Hager G. Karas M. Sorg C. J. Biol. Chem. 1991; 266: 13462-13467Google Scholar). In this report we show that FA-p34 represents a novel class of FA-binding proteins and discuss its possible role in mediating the biological activities of unsaturated fatty acids. INTRODUCTIONFatty acids (FAs) 1The abbreviations used are: FAfatty acidFABPfatty acid-binding proteinmAbmouse monoclonal antibodyPBSphosphate-buffered salinePAGEpolyacrylamide gel electrophoresisOAoleic acidrMRPrecombinant MRPp34protein complex of 34 kDa composed of MRP8 and MRP14FA-p34p34 able to bind fatty acidMRP8/14various protein complexes formed of MRP8 and MRP14PMNLpolymorphonuclear leukocytesHSEPFhigh salt extractable protein fraction are implicated in energy delivery, membrane synthesis, in the lipid barrier function of epidermis, in inflammation, and they modulate gene expression (1Feingold K.R. Adv. Lipid Res. 1991; 24: 57-82Google Scholar, 2Forman B.M. Tontonoz P. Chen J. Brun R.P. Spiegelman B.M. Evans R.M. Cell. 1995; 83: 803-812Google Scholar, 3Kliewer S.A. Lenhard J.M. Wilson T.M. Patel I. Morris D.C. Lehmann J.M. Cell. 1995; 83: 813-819Google Scholar). FAs are hydrophobic, labile molecules forming poor-soluble complexes with intracellular calcium ions, which are required for keratinocyte differentiation. Therefore, FAs need to be solubilized, stabilized, and translocated by specific carrier proteins (4Veerkamp J.H. Proc. Nutr. Soc. 1995; 54: 23-37Google Scholar). Three distinct families of lipid-binding proteins, i.e. extracellular albumin, the cytoplasmic fatty acid-binding proteins (FABPs), and the peroxisome proliferator-activated nuclear receptors (2Forman B.M. Tontonoz P. Chen J. Brun R.P. Spiegelman B.M. Evans R.M. Cell. 1995; 83: 803-812Google Scholar, 3Kliewer S.A. Lenhard J.M. Wilson T.M. Patel I. Morris D.C. Lehmann J.M. Cell. 1995; 83: 813-819Google Scholar) are thought to mediate the biological activities of FAs. Skin represents a very active lipid-synthesizing tissue in mammals. Two recent reports describe that human keratinocytes express the epidermal FABP, which is highly up-regulated in the hyperproliferative and inflammatory skin disease psoriasis (5Madsen P. Rasmussen H.H. Leffers H. Honoré B. Celis J.E. J. Invest. Dermatol. 1992; 99: 299-305Abstract Full Text PDF Google Scholar, 6Siegenthaler G. Hotz R. Chatellard-Gruaz D. Didierjean L. Hellman U. Saurat J.H. Biochem. J. 1994; 302: 363-371Google Scholar, 7Masouyé I. Saurat J.-H. Siegenthaler G. Dermatology. 1996; 192: 208-213Google Scholar). The epidermis lacks the Δ5- and Δ6-desaturases (8Chapkin R.S. Ziboh V.A. Marcelo C.L. J. Lipid. Res. 1986; 27: 945-954Google Scholar), and, therefore, essential FAs like linoleic and arachidonic acid must be acquired from circulation. E-FABP binds stearic, oleic, and linoleic acid but has no affinity for arachidonic acid and a very low affinity for the nearby precursor, linolenic acid (6Siegenthaler G. Hotz R. Chatellard-Gruaz D. Didierjean L. Hellman U. Saurat J.H. Biochem. J. 1994; 302: 363-371Google Scholar). Since no other FABPs have been detected in keratinocytes so far, we investigated whether a carrier protein, capable to bind unsaturated fatty acids like linolenic and arachidonic acid, might exist in psoriatic skin and cultured human keratinocytes.We characterized a fatty acid-binding heteromer of 34 kDa (FA-p34) isolated from human keratinocytes, which is composed of MRP8 (also referred to as cystic fibrosis antigen, the L1 light chain, p8, calgranulin A, S100A8) and MRP14 (L1 heavy chain, p14, calgranulin B, S100A9) (for a review, see 9Hessian P.A. Edgeworth J. Hogg N. J. Leukocyte Biol. 1993; 53: 197-204Google Scholar). These proteins belong to the S100 family of Ca2+-binding proteins (reviewed in 10Kligman D. Hilt D.C. Trends Biochem. Sci. 1988; 13: 437-447Google Scholar), and both molecules are highly up-regulated in psoriatic skin (5Madsen P. Rasmussen H.H. Leffers H. Honoré B. Celis J.E. J. Invest. Dermatol. 1992; 99: 299-305Abstract Full Text PDF Google Scholar, 11Gabrielsen T.O. Dale J. Brandtzaeg P. Hoel P.S. Fagerhol M.K. Larsen T.E. Thune P.O. J. Am. Acad. Dermatol. 1986; 15: 173-179Google Scholar, 12Saintigny G. Schmidt R. Shroot B. Juhlin L. Reichert U. Michel S. J. Invest. Dermatol. 1992; 99: 639-644Google Scholar, 13Wilkinson M.M. Busuttil A. Hayward C. Brock D.J.H. Dorin J.R. Van Heyningen V. J. Cell Sci. 1988; 91: 221-230Google Scholar, 14Brandtzaeg P. Dale I. Fagerhol M.K. Am. J. Clin. Pathol. 1987; 87: 700-707Google Scholar). Furthermore, for both molecules several post-translational modifications and the formation of high molecular weight complexes in vivo have been reported (15Edgeworth J. Gorman M. Bennett R. Freemont P. Hogg N. J. Biol. Chem. 1991; 266: 7706-7713Google Scholar, 16Raftery M.J. Harrison C.A. Alewood P. Jones A. Geczy C.L. Biochem. J. 1996; 316: 285-293Google Scholar, 17Guignard F. Mauel J. Markert M. Eur. J. Biochem. 1996; 241: 265-271Google Scholar, 18Teigelkamp S. Bhardwaj R.S. Roth J. Meinardus-Hager G. Karas M. Sorg C. J. Biol. Chem. 1991; 266: 13462-13467Google Scholar). In this report we show that FA-p34 represents a novel class of FA-binding proteins and discuss its possible role in mediating the biological activities of unsaturated fatty acids." @default.
- W2045479963 created "2016-06-24" @default.
- W2045479963 creator A5014865981 @default.
- W2045479963 creator A5032534504 @default.
- W2045479963 creator A5042515660 @default.
- W2045479963 creator A5062689027 @default.
- W2045479963 creator A5062743691 @default.
- W2045479963 creator A5068050240 @default.
- W2045479963 creator A5078330362 @default.
- W2045479963 date "1997-04-01" @default.
- W2045479963 modified "2023-09-28" @default.
- W2045479963 title "A Heterocomplex Formed by the Calcium-binding Proteins MRP8 (S100A8) and MRP14 (S100A9) Binds Unsaturated Fatty Acids with High Affinity" @default.
- W2045479963 cites W1589237240 @default.
- W2045479963 cites W1660611080 @default.
- W2045479963 cites W1756522554 @default.
- W2045479963 cites W1878762030 @default.
- W2045479963 cites W1885035417 @default.
- W2045479963 cites W1963927869 @default.
- W2045479963 cites W1963984598 @default.
- W2045479963 cites W1964498325 @default.
- W2045479963 cites W1973804976 @default.
- W2045479963 cites W1977665128 @default.
- W2045479963 cites W1983649348 @default.
- W2045479963 cites W1995353543 @default.
- W2045479963 cites W2000976891 @default.
- W2045479963 cites W2001727356 @default.
- W2045479963 cites W2005674716 @default.
- W2045479963 cites W2009916885 @default.
- W2045479963 cites W2011455390 @default.
- W2045479963 cites W2012046594 @default.
- W2045479963 cites W2021873282 @default.
- W2045479963 cites W2023296704 @default.
- W2045479963 cites W2026359714 @default.
- W2045479963 cites W2028358479 @default.
- W2045479963 cites W2047564731 @default.
- W2045479963 cites W2050717908 @default.
- W2045479963 cites W2054319504 @default.
- W2045479963 cites W2091764761 @default.
- W2045479963 cites W2117871749 @default.
- W2045479963 cites W2140807560 @default.
- W2045479963 cites W2217888991 @default.
- W2045479963 cites W2254937121 @default.
- W2045479963 cites W2318679016 @default.
- W2045479963 cites W39487748 @default.
- W2045479963 cites W75618519 @default.
- W2045479963 doi "https://doi.org/10.1074/jbc.272.14.9371" @default.
- W2045479963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9083074" @default.
- W2045479963 hasPublicationYear "1997" @default.
- W2045479963 type Work @default.
- W2045479963 sameAs 2045479963 @default.
- W2045479963 citedByCount "89" @default.
- W2045479963 countsByYear W20454799632013 @default.
- W2045479963 countsByYear W20454799632014 @default.
- W2045479963 countsByYear W20454799632015 @default.
- W2045479963 countsByYear W20454799632016 @default.
- W2045479963 countsByYear W20454799632017 @default.
- W2045479963 countsByYear W20454799632018 @default.
- W2045479963 countsByYear W20454799632019 @default.
- W2045479963 countsByYear W20454799632020 @default.
- W2045479963 countsByYear W20454799632021 @default.
- W2045479963 crossrefType "journal-article" @default.
- W2045479963 hasAuthorship W2045479963A5014865981 @default.
- W2045479963 hasAuthorship W2045479963A5032534504 @default.
- W2045479963 hasAuthorship W2045479963A5042515660 @default.
- W2045479963 hasAuthorship W2045479963A5062689027 @default.
- W2045479963 hasAuthorship W2045479963A5062743691 @default.
- W2045479963 hasAuthorship W2045479963A5068050240 @default.
- W2045479963 hasAuthorship W2045479963A5078330362 @default.
- W2045479963 hasBestOaLocation W20454799631 @default.
- W2045479963 hasConcept C104317684 @default.
- W2045479963 hasConcept C178790620 @default.
- W2045479963 hasConcept C185592680 @default.
- W2045479963 hasConcept C2776307749 @default.
- W2045479963 hasConcept C2778557267 @default.
- W2045479963 hasConcept C519063684 @default.
- W2045479963 hasConcept C55493867 @default.
- W2045479963 hasConceptScore W2045479963C104317684 @default.
- W2045479963 hasConceptScore W2045479963C178790620 @default.
- W2045479963 hasConceptScore W2045479963C185592680 @default.
- W2045479963 hasConceptScore W2045479963C2776307749 @default.
- W2045479963 hasConceptScore W2045479963C2778557267 @default.
- W2045479963 hasConceptScore W2045479963C519063684 @default.
- W2045479963 hasConceptScore W2045479963C55493867 @default.
- W2045479963 hasIssue "14" @default.
- W2045479963 hasLocation W20454799631 @default.
- W2045479963 hasOpenAccess W2045479963 @default.
- W2045479963 hasPrimaryLocation W20454799631 @default.
- W2045479963 hasRelatedWork W1950981769 @default.
- W2045479963 hasRelatedWork W2141268830 @default.
- W2045479963 hasRelatedWork W2144578507 @default.
- W2045479963 hasRelatedWork W3030913893 @default.
- W2045479963 hasRelatedWork W3031203826 @default.
- W2045479963 hasRelatedWork W3083103331 @default.
- W2045479963 hasRelatedWork W3115826556 @default.
- W2045479963 hasRelatedWork W3143953005 @default.
- W2045479963 hasRelatedWork W4361290181 @default.
- W2045479963 hasRelatedWork W2480145060 @default.
- W2045479963 hasVolume "272" @default.