Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045487859> ?p ?o ?g. }
- W2045487859 endingPage "2302" @default.
- W2045487859 startingPage "2289" @default.
- W2045487859 abstract "Traffic estimation is crucial to a number of tasks such as traffic management and road engineering. We propose an approach for metropolitan-scale traffic estimation with probe vehicles that periodically send location and speed updates to a monitoring center. In our approach, we use the flow speed on a road link within a time slot to indicate the traffic condition of the road segment at the given time slot, which is approximated by the average value of probe speeds. By analyzing a large data set of two-year probe data collected from a fleet of around 4,000 taxis in Shanghai, China, we find that a set of probe data may contain a lot of spatiotemporal vacancies over both time and space. This raises a serious missing data problem for road traffic estimation, which results from the naturally uneven distribution of probe vehicles over both time and space. Through empirical study based on the data set of real probe data using principal component analysis (PCA), we have observed that there are hidden structures within the traffic conditions of a road network. Inspired by this observation, we propose a compressive sensing-based algorithm for solving the missing data problem, which exploits the hidden structures for computing estimates for road traffic conditions. Different from existing approaches, our algorithm does not rely on complicated traffic models, which usually require costly training with field study and large data sets. With extensive experiments based on the data set of real probe data, we demonstrate that our proposed algorithm performs significantly better than other completing algorithms, including KNN and MSSA. Surprisingly, our algorithm can achieve an estimate error of as low as 20 percent even when more than 80 percent of probe data are missing." @default.
- W2045487859 created "2016-06-24" @default.
- W2045487859 creator A5004583586 @default.
- W2045487859 creator A5011063099 @default.
- W2045487859 creator A5040009629 @default.
- W2045487859 creator A5071050711 @default.
- W2045487859 creator A5081759167 @default.
- W2045487859 date "2013-11-01" @default.
- W2045487859 modified "2023-10-13" @default.
- W2045487859 title "A Compressive Sensing Approach to Urban Traffic Estimation with Probe Vehicles" @default.
- W2045487859 cites W1977656351 @default.
- W2045487859 cites W1996573126 @default.
- W2045487859 cites W2003404844 @default.
- W2045487859 cites W2015539735 @default.
- W2045487859 cites W2030172596 @default.
- W2045487859 cites W2031346385 @default.
- W2045487859 cites W2031674781 @default.
- W2045487859 cites W2033667833 @default.
- W2045487859 cites W2045174117 @default.
- W2045487859 cites W2056755445 @default.
- W2045487859 cites W2093113258 @default.
- W2045487859 cites W2103968250 @default.
- W2045487859 cites W2104266187 @default.
- W2045487859 cites W2107761673 @default.
- W2045487859 cites W2118550318 @default.
- W2045487859 cites W2125486908 @default.
- W2045487859 cites W2126236329 @default.
- W2045487859 cites W2129638195 @default.
- W2045487859 cites W2132181932 @default.
- W2045487859 cites W2139650347 @default.
- W2045487859 cites W2144169341 @default.
- W2045487859 cites W2145438115 @default.
- W2045487859 cites W2148268126 @default.
- W2045487859 cites W2157578436 @default.
- W2045487859 cites W2162203086 @default.
- W2045487859 cites W2164769042 @default.
- W2045487859 cites W2165155128 @default.
- W2045487859 cites W2170918595 @default.
- W2045487859 cites W2171959453 @default.
- W2045487859 cites W2172041433 @default.
- W2045487859 cites W2611328865 @default.
- W2045487859 cites W2999946671 @default.
- W2045487859 cites W3102105495 @default.
- W2045487859 cites W4246071789 @default.
- W2045487859 cites W4250955649 @default.
- W2045487859 doi "https://doi.org/10.1109/tmc.2012.205" @default.
- W2045487859 hasPublicationYear "2013" @default.
- W2045487859 type Work @default.
- W2045487859 sameAs 2045487859 @default.
- W2045487859 citedByCount "154" @default.
- W2045487859 countsByYear W20454878592013 @default.
- W2045487859 countsByYear W20454878592014 @default.
- W2045487859 countsByYear W20454878592015 @default.
- W2045487859 countsByYear W20454878592016 @default.
- W2045487859 countsByYear W20454878592017 @default.
- W2045487859 countsByYear W20454878592018 @default.
- W2045487859 countsByYear W20454878592019 @default.
- W2045487859 countsByYear W20454878592020 @default.
- W2045487859 countsByYear W20454878592021 @default.
- W2045487859 countsByYear W20454878592022 @default.
- W2045487859 countsByYear W20454878592023 @default.
- W2045487859 crossrefType "journal-article" @default.
- W2045487859 hasAuthorship W2045487859A5004583586 @default.
- W2045487859 hasAuthorship W2045487859A5011063099 @default.
- W2045487859 hasAuthorship W2045487859A5040009629 @default.
- W2045487859 hasAuthorship W2045487859A5071050711 @default.
- W2045487859 hasAuthorship W2045487859A5081759167 @default.
- W2045487859 hasConcept C124101348 @default.
- W2045487859 hasConcept C127413603 @default.
- W2045487859 hasConcept C154945302 @default.
- W2045487859 hasConcept C177264268 @default.
- W2045487859 hasConcept C183373512 @default.
- W2045487859 hasConcept C199360897 @default.
- W2045487859 hasConcept C207512268 @default.
- W2045487859 hasConcept C22212356 @default.
- W2045487859 hasConcept C2779888511 @default.
- W2045487859 hasConcept C31258907 @default.
- W2045487859 hasConcept C41008148 @default.
- W2045487859 hasConcept C58489278 @default.
- W2045487859 hasConcept C64093975 @default.
- W2045487859 hasConcept C79403827 @default.
- W2045487859 hasConceptScore W2045487859C124101348 @default.
- W2045487859 hasConceptScore W2045487859C127413603 @default.
- W2045487859 hasConceptScore W2045487859C154945302 @default.
- W2045487859 hasConceptScore W2045487859C177264268 @default.
- W2045487859 hasConceptScore W2045487859C183373512 @default.
- W2045487859 hasConceptScore W2045487859C199360897 @default.
- W2045487859 hasConceptScore W2045487859C207512268 @default.
- W2045487859 hasConceptScore W2045487859C22212356 @default.
- W2045487859 hasConceptScore W2045487859C2779888511 @default.
- W2045487859 hasConceptScore W2045487859C31258907 @default.
- W2045487859 hasConceptScore W2045487859C41008148 @default.
- W2045487859 hasConceptScore W2045487859C58489278 @default.
- W2045487859 hasConceptScore W2045487859C64093975 @default.
- W2045487859 hasConceptScore W2045487859C79403827 @default.
- W2045487859 hasIssue "11" @default.
- W2045487859 hasLocation W20454878591 @default.
- W2045487859 hasOpenAccess W2045487859 @default.