Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045492898> ?p ?o ?g. }
- W2045492898 abstract "The study of combinatorial problems with a submodular objective function has attracted much attention in recent years, and is partly motivated by the importance of such problems to economics, algorithmic game theory and combinatorial optimization. Classical works on these problems are mostly combinatorial in nature. Recently, however, many results based on continuous algorithmic tools have emerged. The main bottleneck of such continuous techniques is how to approximately solve a non-convex relaxation for the sub- modular problem at hand. Thus, the efficient computation of better fractional solutions immediately implies improved approximations for numerous applications. A simple and elegant method, called continuous greedy, successfully tackles this issue for monotone submodular objective functions, however, only much more complex tools are known to work for general non-monotone submodular objectives. In this work we present a new unified continuous greedy algorithm which finds approximate fractional solutions for both the non-monotone and monotone cases, and improves on the approximation ratio for many applications. For general non-monotone submodular objective functions, our algorithm achieves an improved approximation ratio of about 1/e. For monotone submodular objective functions, our algorithm achieves an approximation ratio that depends on the density of the polytope defined by the problem at hand, which is always at least as good as the previously known best approximation ratio of 1-1/e. Some notable immediate implications are an improved 1/e-approximation for maximizing a non-monotone submodular function subject to a matroid or O(1)-knapsack constraints, and information-theoretic tight approximations for Submodular Max-SAT and Submodular Welfare with k players, for any number of players k. A framework for submodular optimization problems, called the contention resolution framework, was introduced recently by Chekuri et al. [11]. The improved approximation ratio of the unified continuous greedy algorithm implies improved ap- proximation ratios for many problems through this framework. Moreover, via a parameter called stopping time, our algorithm merges the relaxation solving and re-normalization steps of the framework, and achieves, for some applications, further improvements. We also describe new monotone balanced con- tention resolution schemes for various matching, scheduling and packing problems, thus, improving the approximations achieved for these problems via the framework." @default.
- W2045492898 created "2016-06-24" @default.
- W2045492898 creator A5025400832 @default.
- W2045492898 creator A5068494085 @default.
- W2045492898 creator A5077772086 @default.
- W2045492898 date "2011-10-01" @default.
- W2045492898 modified "2023-10-11" @default.
- W2045492898 title "A Unified Continuous Greedy Algorithm for Submodular Maximization" @default.
- W2045492898 cites W1498671329 @default.
- W2045492898 cites W1526762477 @default.
- W2045492898 cites W1542515633 @default.
- W2045492898 cites W1599161138 @default.
- W2045492898 cites W1680189815 @default.
- W2045492898 cites W1985123706 @default.
- W2045492898 cites W1989453388 @default.
- W2045492898 cites W1995275762 @default.
- W2045492898 cites W1996696855 @default.
- W2045492898 cites W1997783781 @default.
- W2045492898 cites W1999032440 @default.
- W2045492898 cites W2004045061 @default.
- W2045492898 cites W2011193572 @default.
- W2045492898 cites W2026338082 @default.
- W2045492898 cites W2033885045 @default.
- W2045492898 cites W2062875287 @default.
- W2045492898 cites W2069448900 @default.
- W2045492898 cites W2072291569 @default.
- W2045492898 cites W2080379754 @default.
- W2045492898 cites W2087038607 @default.
- W2045492898 cites W2089729462 @default.
- W2045492898 cites W2113437680 @default.
- W2045492898 cites W2126085282 @default.
- W2045492898 cites W2126307323 @default.
- W2045492898 cites W2136765140 @default.
- W2045492898 cites W2146489710 @default.
- W2045492898 cites W2161272173 @default.
- W2045492898 cites W2401610261 @default.
- W2045492898 cites W2757107770 @default.
- W2045492898 cites W2899702797 @default.
- W2045492898 cites W2949112927 @default.
- W2045492898 cites W3124727707 @default.
- W2045492898 cites W3141561286 @default.
- W2045492898 cites W39861960 @default.
- W2045492898 cites W4231916799 @default.
- W2045492898 cites W4245400518 @default.
- W2045492898 cites W4245538905 @default.
- W2045492898 cites W4248079359 @default.
- W2045492898 cites W60525624 @default.
- W2045492898 cites W8905951 @default.
- W2045492898 doi "https://doi.org/10.1109/focs.2011.46" @default.
- W2045492898 hasPublicationYear "2011" @default.
- W2045492898 type Work @default.
- W2045492898 sameAs 2045492898 @default.
- W2045492898 citedByCount "202" @default.
- W2045492898 countsByYear W20454928982012 @default.
- W2045492898 countsByYear W20454928982013 @default.
- W2045492898 countsByYear W20454928982014 @default.
- W2045492898 countsByYear W20454928982015 @default.
- W2045492898 countsByYear W20454928982016 @default.
- W2045492898 countsByYear W20454928982017 @default.
- W2045492898 countsByYear W20454928982018 @default.
- W2045492898 countsByYear W20454928982019 @default.
- W2045492898 countsByYear W20454928982020 @default.
- W2045492898 countsByYear W20454928982021 @default.
- W2045492898 countsByYear W20454928982022 @default.
- W2045492898 countsByYear W20454928982023 @default.
- W2045492898 crossrefType "proceedings-article" @default.
- W2045492898 hasAuthorship W2045492898A5025400832 @default.
- W2045492898 hasAuthorship W2045492898A5068494085 @default.
- W2045492898 hasAuthorship W2045492898A5077772086 @default.
- W2045492898 hasConcept C106286213 @default.
- W2045492898 hasConcept C113138325 @default.
- W2045492898 hasConcept C118615104 @default.
- W2045492898 hasConcept C126255220 @default.
- W2045492898 hasConcept C148764684 @default.
- W2045492898 hasConcept C178621042 @default.
- W2045492898 hasConcept C2524010 @default.
- W2045492898 hasConcept C2834757 @default.
- W2045492898 hasConcept C33923547 @default.
- W2045492898 hasConcept C51823790 @default.
- W2045492898 hasConceptScore W2045492898C106286213 @default.
- W2045492898 hasConceptScore W2045492898C113138325 @default.
- W2045492898 hasConceptScore W2045492898C118615104 @default.
- W2045492898 hasConceptScore W2045492898C126255220 @default.
- W2045492898 hasConceptScore W2045492898C148764684 @default.
- W2045492898 hasConceptScore W2045492898C178621042 @default.
- W2045492898 hasConceptScore W2045492898C2524010 @default.
- W2045492898 hasConceptScore W2045492898C2834757 @default.
- W2045492898 hasConceptScore W2045492898C33923547 @default.
- W2045492898 hasConceptScore W2045492898C51823790 @default.
- W2045492898 hasLocation W20454928981 @default.
- W2045492898 hasOpenAccess W2045492898 @default.
- W2045492898 hasPrimaryLocation W20454928981 @default.
- W2045492898 hasRelatedWork W1499990180 @default.
- W2045492898 hasRelatedWork W2357796514 @default.
- W2045492898 hasRelatedWork W2393014972 @default.
- W2045492898 hasRelatedWork W2506304636 @default.
- W2045492898 hasRelatedWork W3204684126 @default.
- W2045492898 hasRelatedWork W4235430592 @default.
- W2045492898 hasRelatedWork W4241672388 @default.
- W2045492898 hasRelatedWork W4252399622 @default.