Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045534037> ?p ?o ?g. }
- W2045534037 endingPage "074706" @default.
- W2045534037 startingPage "074706" @default.
- W2045534037 abstract "A field theoretic variational approach is introduced to study ion penetration into water-filled cylindrical nanopores in equilibrium with a bulk reservoir [S. Buyukdagli, M. Manghi, and J. Palmeri, Phys. Rev. Lett. 105, 158103 (2010)]. It is shown that an ion located in a neutral pore undergoes two opposing mechanisms: (i) a deformation of its surrounding ionic cloud of opposite charge, with respect to the reservoir, which increases the surface tension and tends to exclude ions from the pore, and (ii) an attractive contribution to the ion self-energy due to the increased screening with ion penetration of the repulsive image forces associated with the dielectric jump between the solvent and the pore wall. For pore radii around 1 nm and bulk concentrations lower than 0.2 mol/l, this mechanism leads to a first-order phase transition, similar to capillary evaporation, from an ionic-penetration state to an ionic-exclusion state. The discontinuous phase transition exists within the biological concentration range (∼0.15 mol/l) for small enough membrane dielectric constants (ε(m) < 5). In the case of a weakly charged pore, counterion penetration exhibits a nonmonotonic behavior and is characterized by two regimes: at low reservoir concentrations or small pore radii, coions are excluded and counterions enter the pore to enforce electroneutrality; dielectric repulsion (image forces) remain strong and the counterion partition coefficient decreases with increasing reservoir concentration up to a characteristic value. For larger reservoir concentrations, image forces are screened and the partition coefficient of counterions increases with the reservoir concentration, as in the neutral pore case. Large surface charge densities (>2 × 10(-3) e/nm(2)) suppress the discontinuous transition by reducing the energy barrier for ion penetration and shifting the critical point toward very small pore sizes and reservoir concentrations. Our variational method is also compared to a previous self-consistent approach and yields important quantitative corrections. The role of the curvature of dielectric interfaces is highlighted by comparing ionic penetration into slit and cylindrical pores. Finally, a charge regulation model is introduced in order to explain the key effect of pH on ionic exclusion and explain the origin of observed time-dependent nanopore electric conductivity fluctuations and their correlation with those of the pore surface charge." @default.
- W2045534037 created "2016-06-24" @default.
- W2045534037 creator A5006454644 @default.
- W2045534037 creator A5038904820 @default.
- W2045534037 creator A5054880095 @default.
- W2045534037 date "2011-02-21" @default.
- W2045534037 modified "2023-10-18" @default.
- W2045534037 title "Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores" @default.
- W2045534037 cites W1965394699 @default.
- W2045534037 cites W1965400818 @default.
- W2045534037 cites W1967737934 @default.
- W2045534037 cites W1969529593 @default.
- W2045534037 cites W1971672113 @default.
- W2045534037 cites W1973146329 @default.
- W2045534037 cites W1973593860 @default.
- W2045534037 cites W1984271709 @default.
- W2045534037 cites W1988577466 @default.
- W2045534037 cites W1990451546 @default.
- W2045534037 cites W1994444219 @default.
- W2045534037 cites W1998115871 @default.
- W2045534037 cites W2000382842 @default.
- W2045534037 cites W2000477334 @default.
- W2045534037 cites W2002850722 @default.
- W2045534037 cites W2008579133 @default.
- W2045534037 cites W2013028732 @default.
- W2045534037 cites W2016026420 @default.
- W2045534037 cites W2016343290 @default.
- W2045534037 cites W2017174049 @default.
- W2045534037 cites W2018032414 @default.
- W2045534037 cites W2020406249 @default.
- W2045534037 cites W2022680604 @default.
- W2045534037 cites W2024647268 @default.
- W2045534037 cites W2025730668 @default.
- W2045534037 cites W2027472816 @default.
- W2045534037 cites W2029576036 @default.
- W2045534037 cites W2033156442 @default.
- W2045534037 cites W2034203993 @default.
- W2045534037 cites W2041991000 @default.
- W2045534037 cites W2046024650 @default.
- W2045534037 cites W2046858816 @default.
- W2045534037 cites W2053843075 @default.
- W2045534037 cites W2055590521 @default.
- W2045534037 cites W2060923418 @default.
- W2045534037 cites W2061076475 @default.
- W2045534037 cites W2063379618 @default.
- W2045534037 cites W2067054284 @default.
- W2045534037 cites W2068145870 @default.
- W2045534037 cites W2069020841 @default.
- W2045534037 cites W2071860186 @default.
- W2045534037 cites W2076675155 @default.
- W2045534037 cites W2085654944 @default.
- W2045534037 cites W2087159568 @default.
- W2045534037 cites W2088960562 @default.
- W2045534037 cites W2089722695 @default.
- W2045534037 cites W2094984789 @default.
- W2045534037 cites W2095435768 @default.
- W2045534037 cites W2104129019 @default.
- W2045534037 cites W2132090459 @default.
- W2045534037 cites W2156963746 @default.
- W2045534037 cites W3101572375 @default.
- W2045534037 cites W3101886928 @default.
- W2045534037 cites W3102773327 @default.
- W2045534037 cites W3105082319 @default.
- W2045534037 cites W431385553 @default.
- W2045534037 doi "https://doi.org/10.1063/1.3526940" @default.
- W2045534037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21341868" @default.
- W2045534037 hasPublicationYear "2011" @default.
- W2045534037 type Work @default.
- W2045534037 sameAs 2045534037 @default.
- W2045534037 citedByCount "25" @default.
- W2045534037 countsByYear W20455340372012 @default.
- W2045534037 countsByYear W20455340372013 @default.
- W2045534037 countsByYear W20455340372014 @default.
- W2045534037 countsByYear W20455340372015 @default.
- W2045534037 countsByYear W20455340372016 @default.
- W2045534037 countsByYear W20455340372017 @default.
- W2045534037 countsByYear W20455340372018 @default.
- W2045534037 countsByYear W20455340372019 @default.
- W2045534037 countsByYear W20455340372020 @default.
- W2045534037 countsByYear W20455340372021 @default.
- W2045534037 countsByYear W20455340372022 @default.
- W2045534037 countsByYear W20455340372023 @default.
- W2045534037 crossrefType "journal-article" @default.
- W2045534037 hasAuthorship W2045534037A5006454644 @default.
- W2045534037 hasAuthorship W2045534037A5038904820 @default.
- W2045534037 hasAuthorship W2045534037A5054880095 @default.
- W2045534037 hasBestOaLocation W20455340374 @default.
- W2045534037 hasConcept C113196181 @default.
- W2045534037 hasConcept C121332964 @default.
- W2045534037 hasConcept C127413603 @default.
- W2045534037 hasConcept C133386390 @default.
- W2045534037 hasConcept C141795571 @default.
- W2045534037 hasConcept C145148216 @default.
- W2045534037 hasConcept C149288129 @default.
- W2045534037 hasConcept C159467904 @default.
- W2045534037 hasConcept C171250308 @default.
- W2045534037 hasConcept C178790620 @default.
- W2045534037 hasConcept C185592680 @default.