Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045544049> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2045544049 endingPage "66" @default.
- W2045544049 startingPage "27" @default.
- W2045544049 abstract "Let F be a local field, $ psi $ a nontrivial unitary additive character of F, and V a finite dimensional vector space over F. Let us say that a complex function on V is elementary if it has the form $ g(x) = Cpsi(Q(x))prod^{k}_{j = 1}chi_j(P_j(x)), x in V $ , where $ C in mathbb{C} $ , Q is a rational function (the phase function), $ P_j $ are polynomials, and $ chi_j $ multiplicative characters of F. For generic $ chi_j $ , this function canonically extends to a distribution on V (if char(F) = 0). Occasionally, the Fourier transform of an elementary function is also an elementary function (the basic example is the Gaussian integral: k = 0, Q is a nondegenerate quadratic form). It is interesting to determine when exactly this happens. This question is the main subject of our study. In the first part of this paper we show that for $ F = mathbb{R} $ or $ mathbb{C} $ , if the Fourier transform of an elementary function $ g neq 0 $ with phase function -Q such that $ det d^2Q neq 0 $ is another elementary function $ g^* $ with phase function $ Q^* $ , then $ Q^* $ is the Legendre transform of Q (the semiclassical condition). We study properties and examples of phase functions satisfying this condition, and give a classification of phase functions such that both Q and $ Q^* $ are of the form f(x)/t, where f is a homogeneous cubic polynomial and t is an additional variable (this is one of the simplest possible situations). Unexpectedly, the proof uses Zak's classification theorem for Severi varieties.¶ In the second part of the paper we give a necessary and sufficient condition for an elementary function to have an elementary Fourier transform (in an appropriate weak sense) and explicit formulas for such Fourier transforms in the case when Q and $ P_j $ are monomials, over any local field F. We also describe a generalization of these results to the case of monomials of norms of finite extensions of F. Finally, we generalize some of the above results (including Fourier integration formulas) to the case when $ F = mathbb{C} $ and Q comes from a prehomogeneous vector space." @default.
- W2045544049 created "2016-06-24" @default.
- W2045544049 creator A5015976690 @default.
- W2045544049 creator A5072175999 @default.
- W2045544049 creator A5075556491 @default.
- W2045544049 date "2002-04-01" @default.
- W2045544049 modified "2023-09-26" @default.
- W2045544049 title "When is the Fourier transform of an elementary function elementary?" @default.
- W2045544049 cites W1482975181 @default.
- W2045544049 cites W1498076803 @default.
- W2045544049 cites W1506692979 @default.
- W2045544049 cites W1555475515 @default.
- W2045544049 cites W1576345951 @default.
- W2045544049 cites W1598666130 @default.
- W2045544049 cites W2126479355 @default.
- W2045544049 cites W2990005347 @default.
- W2045544049 doi "https://doi.org/10.1007/s00029-002-8101-7" @default.
- W2045544049 hasPublicationYear "2002" @default.
- W2045544049 type Work @default.
- W2045544049 sameAs 2045544049 @default.
- W2045544049 citedByCount "29" @default.
- W2045544049 countsByYear W20455440492012 @default.
- W2045544049 countsByYear W20455440492013 @default.
- W2045544049 countsByYear W20455440492014 @default.
- W2045544049 countsByYear W20455440492016 @default.
- W2045544049 countsByYear W20455440492017 @default.
- W2045544049 countsByYear W20455440492018 @default.
- W2045544049 countsByYear W20455440492019 @default.
- W2045544049 countsByYear W20455440492020 @default.
- W2045544049 countsByYear W20455440492021 @default.
- W2045544049 countsByYear W20455440492022 @default.
- W2045544049 countsByYear W20455440492023 @default.
- W2045544049 crossrefType "journal-article" @default.
- W2045544049 hasAuthorship W2045544049A5015976690 @default.
- W2045544049 hasAuthorship W2045544049A5072175999 @default.
- W2045544049 hasAuthorship W2045544049A5075556491 @default.
- W2045544049 hasBestOaLocation W20455440492 @default.
- W2045544049 hasConcept C102519508 @default.
- W2045544049 hasConcept C110121322 @default.
- W2045544049 hasConcept C114614502 @default.
- W2045544049 hasConcept C134306372 @default.
- W2045544049 hasConcept C14036430 @default.
- W2045544049 hasConcept C33923547 @default.
- W2045544049 hasConcept C42747912 @default.
- W2045544049 hasConcept C78458016 @default.
- W2045544049 hasConcept C86803240 @default.
- W2045544049 hasConcept C90119067 @default.
- W2045544049 hasConceptScore W2045544049C102519508 @default.
- W2045544049 hasConceptScore W2045544049C110121322 @default.
- W2045544049 hasConceptScore W2045544049C114614502 @default.
- W2045544049 hasConceptScore W2045544049C134306372 @default.
- W2045544049 hasConceptScore W2045544049C14036430 @default.
- W2045544049 hasConceptScore W2045544049C33923547 @default.
- W2045544049 hasConceptScore W2045544049C42747912 @default.
- W2045544049 hasConceptScore W2045544049C78458016 @default.
- W2045544049 hasConceptScore W2045544049C86803240 @default.
- W2045544049 hasConceptScore W2045544049C90119067 @default.
- W2045544049 hasIssue "1" @default.
- W2045544049 hasLocation W20455440491 @default.
- W2045544049 hasLocation W20455440492 @default.
- W2045544049 hasLocation W20455440493 @default.
- W2045544049 hasOpenAccess W2045544049 @default.
- W2045544049 hasPrimaryLocation W20455440491 @default.
- W2045544049 hasRelatedWork W1978042415 @default.
- W2045544049 hasRelatedWork W1993024450 @default.
- W2045544049 hasRelatedWork W1996796035 @default.
- W2045544049 hasRelatedWork W2018682603 @default.
- W2045544049 hasRelatedWork W2025793054 @default.
- W2045544049 hasRelatedWork W2045447888 @default.
- W2045544049 hasRelatedWork W2091896560 @default.
- W2045544049 hasRelatedWork W2127459735 @default.
- W2045544049 hasRelatedWork W2782710936 @default.
- W2045544049 hasRelatedWork W4323831470 @default.
- W2045544049 hasVolume "8" @default.
- W2045544049 isParatext "false" @default.
- W2045544049 isRetracted "false" @default.
- W2045544049 magId "2045544049" @default.
- W2045544049 workType "article" @default.