Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045647581> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2045647581 endingPage "568" @default.
- W2045647581 startingPage "503" @default.
- W2045647581 abstract "We examine the Navier-Stokes equations (NS) on a thin <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=3> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=application/x-tex>3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional domain <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Omega Subscript epsilon Baseline equals upper Q 2 times left-parenthesis 0 comma epsilon right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{Omega _varepsilon } = {Q_2} times (0,varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Q 2> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{Q_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a suitable bounded domain in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R squared> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathbb {R}^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=application/x-tex>varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a small, positive, real parameter. We consider these equations with various homogeneous boundary conditions, especially spatially periodic boundary conditions. We show that there are <italic>large</italic> sets <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper R left-parenthesis epsilon right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>R</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {R}(varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript 1 Baseline left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{H^1}({Omega _varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper S left-parenthesis epsilon right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {S}(varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper W Superscript 1 comma normal infinity Baseline left-parenthesis left-parenthesis 0 comma normal infinity right-parenthesis comma upper L squared left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>W</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{W^{1,infty }}((0,infty ),{L^2}({Omega _varepsilon }))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper U 0 element-of script upper R left-parenthesis epsilon right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>U</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>R</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{U_0} in mathcal {R}(varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F element-of script upper S left-parenthesis epsilon right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F in mathcal {S}(varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then (NS) has a strong solution <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper U left-parenthesis t right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>U(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that remains in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript 1 Baseline left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{H^1}({Omega _varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t greater-than-or-equal-to 0> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>t geq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H squared left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{H^2}({Omega _varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>t > 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the set of strong solutions of (NS) has a local attractor <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper A Subscript epsilon> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>A</mml:mi> </mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathfrak {A}_varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript 1 Baseline left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{H^1}({Omega _varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is compact in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H squared left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{H^2}({Omega _varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Furthermore, this local attractor <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper A Subscript epsilon> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>A</mml:mi> </mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathfrak {A}_varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> turns out to be the global attractor for all the weak solutions (in the sense of Leray) of (NS). We also show that, under reasonable assumptions, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper A Subscript epsilon> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>A</mml:mi> </mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathfrak {A}_varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is upper semicontinuous at <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon equals 0> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>varepsilon = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2045647581 created "2016-06-24" @default.
- W2045647581 creator A5003326223 @default.
- W2045647581 creator A5045553490 @default.
- W2045647581 date "1993-01-01" @default.
- W2045647581 modified "2023-10-16" @default.
- W2045647581 title "Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions" @default.
- W2045647581 cites W1536616207 @default.
- W2045647581 cites W1546321017 @default.
- W2045647581 cites W1557040331 @default.
- W2045647581 cites W1560060148 @default.
- W2045647581 cites W1981105721 @default.
- W2045647581 cites W1990011930 @default.
- W2045647581 cites W1995569605 @default.
- W2045647581 cites W2021073558 @default.
- W2045647581 cites W2021964921 @default.
- W2045647581 cites W2022589604 @default.
- W2045647581 cites W2024330387 @default.
- W2045647581 cites W2043876702 @default.
- W2045647581 cites W2045663124 @default.
- W2045647581 cites W2051439685 @default.
- W2045647581 cites W2062861068 @default.
- W2045647581 cites W2066581707 @default.
- W2045647581 cites W2082974778 @default.
- W2045647581 cites W2083368498 @default.
- W2045647581 cites W2095377493 @default.
- W2045647581 cites W2099224503 @default.
- W2045647581 cites W2151847866 @default.
- W2045647581 cites W2501162916 @default.
- W2045647581 cites W2583319872 @default.
- W2045647581 cites W3148800415 @default.
- W2045647581 cites W4230360775 @default.
- W2045647581 cites W4237611790 @default.
- W2045647581 cites W4292366025 @default.
- W2045647581 cites W937966660 @default.
- W2045647581 doi "https://doi.org/10.1090/s0894-0347-1993-1179539-4" @default.
- W2045647581 hasPublicationYear "1993" @default.
- W2045647581 type Work @default.
- W2045647581 sameAs 2045647581 @default.
- W2045647581 citedByCount "95" @default.
- W2045647581 countsByYear W20456475812012 @default.
- W2045647581 countsByYear W20456475812013 @default.
- W2045647581 countsByYear W20456475812014 @default.
- W2045647581 countsByYear W20456475812015 @default.
- W2045647581 countsByYear W20456475812016 @default.
- W2045647581 countsByYear W20456475812017 @default.
- W2045647581 countsByYear W20456475812018 @default.
- W2045647581 countsByYear W20456475812019 @default.
- W2045647581 countsByYear W20456475812020 @default.
- W2045647581 countsByYear W20456475812021 @default.
- W2045647581 countsByYear W20456475812022 @default.
- W2045647581 countsByYear W20456475812023 @default.
- W2045647581 crossrefType "journal-article" @default.
- W2045647581 hasAuthorship W2045647581A5003326223 @default.
- W2045647581 hasAuthorship W2045647581A5045553490 @default.
- W2045647581 hasBestOaLocation W20456475811 @default.
- W2045647581 hasConcept C11413529 @default.
- W2045647581 hasConcept C154945302 @default.
- W2045647581 hasConcept C2776321320 @default.
- W2045647581 hasConcept C41008148 @default.
- W2045647581 hasConceptScore W2045647581C11413529 @default.
- W2045647581 hasConceptScore W2045647581C154945302 @default.
- W2045647581 hasConceptScore W2045647581C2776321320 @default.
- W2045647581 hasConceptScore W2045647581C41008148 @default.
- W2045647581 hasIssue "3" @default.
- W2045647581 hasLocation W20456475811 @default.
- W2045647581 hasOpenAccess W2045647581 @default.
- W2045647581 hasPrimaryLocation W20456475811 @default.
- W2045647581 hasRelatedWork W1529400504 @default.
- W2045647581 hasRelatedWork W1892467659 @default.
- W2045647581 hasRelatedWork W2143954309 @default.
- W2045647581 hasRelatedWork W2333703843 @default.
- W2045647581 hasRelatedWork W2334690443 @default.
- W2045647581 hasRelatedWork W2386767533 @default.
- W2045647581 hasRelatedWork W2394022102 @default.
- W2045647581 hasRelatedWork W2469937864 @default.
- W2045647581 hasRelatedWork W2808586768 @default.
- W2045647581 hasRelatedWork W2998403542 @default.
- W2045647581 hasVolume "6" @default.
- W2045647581 isParatext "false" @default.
- W2045647581 isRetracted "false" @default.
- W2045647581 magId "2045647581" @default.
- W2045647581 workType "article" @default.