Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045672024> ?p ?o ?g. }
- W2045672024 endingPage "1761" @default.
- W2045672024 startingPage "1755" @default.
- W2045672024 abstract "No AccessJournal of UrologyInvestigative Urology1 May 1998THE INHIBITION OF CALCIUM OXALATE MONOHYDRATE CRYSTAL GROWTH BY MALEIC ACID COPOLYMERS K. BOUROPOULOS, N. BOUROPOULOS, M. MELEKOS, P.G. KOUTSOUKOS, G.C. CHITANU, A.G. ANGHELESCU-DOGARU, and A.A. CARPOV K. BOUROPOULOSK. BOUROPOULOS More articles by this author , N. BOUROPOULOSN. BOUROPOULOS More articles by this author , M. MELEKOSM. MELEKOS More articles by this author , P.G. KOUTSOUKOSP.G. KOUTSOUKOS More articles by this author , G.C. CHITANUG.C. CHITANU More articles by this author , A.G. ANGHELESCU-DOGARUA.G. ANGHELESCU-DOGARU More articles by this author , and A.A. CARPOVA.A. CARPOV More articles by this author View All Author Informationhttps://doi.org/10.1097/00005392-199805000-00107AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail The crystallization of calcium oxalate monohydrate (COM) was investigated at conditions of constant supersaturation both in the absence and in the presence of synthetic maleic acid copolymers at 37C, 0.15 M NaCl. The dependence of the rates of COM crystallization in the absence of inhibitors was found to be second order at low and first order at higher supersaturations suggesting a surface diffusion controlled mechanism. The presence of all copolymers tested at concentration levels up to 5 ppm retarded the rates of COM crystal growth up to 90%. The decrease of the COM crystal growth rates by the polymers depended on the nature of the comonomer polymerized with maleic acid and the order of inhibition was found to be vinyl acetate > N-vinylpyrrolidone > styrene. Taking into consideration kinetics data published in the literature concerning the inhibition of COM crystal growth, it is suggested that molecular weight also plays a role, with more inhibition at higher molecular weights. The morphology of the COM crystals grown was unaffected yet the crystals growing at lower rates in the presence of the copolymers were larger and their size more uniform. It is concluded that maleic acid copolymers are strong inhibitors of the crystallization of COM, the inhibitory activity being more pronounced in the case of the linear copolymers. References 1 : Crystallographic studies on the formation of renal calculi. Biochem. J.1971; 22: 6P. Google Scholar 2 : Calcium oxalate: crystallographic analysis in solid aggregates in urinary sediments. Science1970; 169: 183. Google Scholar 3 : Composition of urinary calcium by x-ray diffraction. Br. J. Urol.1968; 40: 402. Google Scholar 4 : Calcium oxalate trihydrate in urinary calculi. Urol. Res.1985; 13: 281. Google Scholar 5 : A contribution to the formation mechanism of calcium oxalate urinary calculi. I. Stabilizing urinary constituents in the formation of weddelite. Urol. Res.1976; 4: 125. Google Scholar 6 : The influence of urinary macromolecules on calcium oxalate monohydrate crystal growth. J. Urol.1988; 139: 190. Abstract, Google Scholar 7 : Adsorption of naturally occurring polymers onto calcium oxalate crystal surfaces. Invest. Urol.1977; 14: 278. Google Scholar 9 : Retardation of calcium oxalate formation by polyacidic peptides. Invest. Urol.1980; 18: 149. Google Scholar 10 : The dual role of polyelectrolyte and proteins as mineralization promoters and inhibitors of calcium oxalate monohydrate. Calcif. Tissue Int.1989; 45: 122. Google Scholar 11 : Effects of urinary macromolecules on the crystallization of calcium oxalate. Urol. Res.1990; 18: 381. Google Scholar 12 : Tamm and Horsfall glycoprotein does not promote spontaneous precipitation and crystal growth of calcium oxalate in vitro. J. Urol.1982; 127: 1024. Link, Google Scholar 13 : Possible role of Tamm-Horsfall glycoprotein in calcium oxalate crystallization. Br. J. Urol.1989; 64: 463. Google Scholar 14 : Effects of chondroitin sulphate, human serum albumin and Tamm-Horsfall mucoprotein on calcium oxalate crystallization in undiluted human urine. Urol. Res.1991; 19: 181. Google Scholar 15 : Zeta potential distribution of calcium oxalate crystal and Tamm-Horsfall protein surface analyzed with Doppler electrophoretic light scattering. J. Urol.1994; 152: 531. Abstract, Google Scholar 16 : The effect of heparin sulphate on the crystallization of calcium oxalate in undiluted, ultrafiltered human urine. Br. J. Urol.1996; 78: 15. Google Scholar 17 : Calcium oxalate crystal growth: a new constant composition method for modeling urinary stone formation. Invest. Urol.1980; 17: 446. Google Scholar 18 : The growth of hydroxyapatite crystals. Archs. Oral Biol.1970; 15: 731. Google Scholar 19 : A model system for the investigation of urinary stone formation. Br. J. Urol.1996; 78: 169. Google Scholar 20 : The crystallization of calcium oxalate at different pH values and in the presence of various adenosine phosphates. J. Coll. Interface Sci.1989; 128: 382. Google Scholar 21 Carpov, A. A., Chitanu, G. C., Maftei, M. and Zamfir, A.: Process of synthesis of carboxylic polyelectrolytes. Rom. Pat. 70120/1979. Google Scholar 22 Chitanu, G. C. and Anghelescu-Dogaru, A. G.: Process of preparation of binary or tertiary copolymers of maleic anhydride and N-vinyl pyrrolidone. Rom. Pat. Appl. C0104/1996. Google Scholar 23 : Determination de la composition de copolymeres ethylene anhydride maleique. Bull. Soc. Chim. Fr.1973; 11: 2977. Google Scholar 24 Chitanu, G. C., Zaharia, I. L. and Carpov, A.: Analysis and characterization of maleic copolymers. Int. J. Polymer Analysis and Characterization, In Press, 1997. Google Scholar 25 : Dilute solution properties of maleic anhydride-vinyl acetate copolymer. Fukui Daigaku Kogakubu Keukyu Hokoku1969; 16: 103. Google Scholar 26 : Physicochemical studies of polymeric carriers. Hydrolysis and fractionation of co-polymer N-vinyl pyrrolidone and maleic anhydrode. Polym. Bull. (Berlin)1981; 5: 413. Google Scholar 27 : Crystallization. Oxford: Butterworth-Heinemann1993: 204. Google Scholar 28 : The role of magnesium in calcium oxalate urolithiasis. Br. J. Urol.1988; 61: 107. Google Scholar 29 : Polymeric additives effect on crystallization of calcium oxalate scales. Cryst. Res. Technol.1995; 30: 791. Google Scholar 30 : The effect of heparin sulfate on the crystallization of calcium oxalate in undiluted, ultrafiltered human urine. Br. J. Urol.1996; 78: 15. Google Scholar 31 : The influence of polyphosphate ions on the precipitation of calcium oxalate. J. Urol.1982; 127: 351. Abstract, Google Scholar 32 : The kinetics of dissolution of calcium oxalate hydrates. J. Cryst. Growth1979; 46: 355. Google Scholar 33 : Adsorption-desorption behavior of acrylic-maleic acid copolymer at clay minerals. J. Colloid Interface Sci.1997; 186: 234. Google Scholar 34 : Performance of inhibitors in calcium fluoride crystal growth inhibition. Langmuir1993; 9: 5597. Google Scholar 35 : Inhibitors of crystallization and dissolution. In: Industrial Crystallization 1984.. Edited by . Amsterdam: Elsevier1984: 51. Google Scholar 36 : Protein adsorption in model systems. Biofouling1991; 4: 37. Google Scholar 37 : The effect of additives upon the process of crystallization. I. Crystallinity of Calcium Sulphate. J. Colloid Interface Sci.1958; 13: 383. Google Scholar 38 : Influence of natural and synthetic inhibitors on the crystallization of calcium oxalate hydrates. World J. Urol.1992; 10: 216. Google Scholar 39 : The influence of some metallic ions and their complexes on the kinetics of crystal growth of calcium oxalate. J. Cryst. Growth1989; 94: 507. Google Scholar 40 : A new approach to studying inhibitors of calcium oxalate crystal growth. Urol. Res.1993; 21: 101. Google Scholar 41 : Crystal growth of calcium oxalate monohydrate. J. Crystal Growth1988; 87: 318. Google Scholar 42 : Influence of ionic strength on crystal adsorption and inhibitory activity of macromolecules. Br. J. Urol.1993; 71: 516. Google Scholar From the Department of Urology, School of Medicine, and the Department of Chemical Engineering, University of Patras, the Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece, and the Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania.© 1998 by American Urological Association, Inc.FiguresReferencesRelatedDetailsCited byAssimos D (2018) Re: Molecular Modifiers Reveal a Mechanism of Pathological Crystal Growth InhibitionJournal of Urology, VOL. 197, NO. 2, (411-413), Online publication date: 1-Feb-2017. Volume 159Issue 5May 1998Page: 1755-1761 Advertisement Copyright & Permissions© 1998 by American Urological Association, Inc.MetricsAuthor Information K. BOUROPOULOS More articles by this author N. BOUROPOULOS More articles by this author M. MELEKOS More articles by this author P.G. KOUTSOUKOS More articles by this author G.C. CHITANU More articles by this author A.G. ANGHELESCU-DOGARU More articles by this author A.A. CARPOV More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2045672024 created "2016-06-24" @default.
- W2045672024 creator A5005420288 @default.
- W2045672024 creator A5011229153 @default.
- W2045672024 creator A5027827602 @default.
- W2045672024 creator A5036478814 @default.
- W2045672024 creator A5050490033 @default.
- W2045672024 creator A5064597485 @default.
- W2045672024 creator A5069523078 @default.
- W2045672024 date "1998-05-01" @default.
- W2045672024 modified "2023-10-18" @default.
- W2045672024 title "THE INHIBITION OF CALCIUM OXALATE MONOHYDRATE CRYSTAL GROWTH BY MALEIC ACID COPOLYMERS" @default.
- W2045672024 cites W1963638540 @default.
- W2045672024 cites W1969506185 @default.
- W2045672024 cites W1970821853 @default.
- W2045672024 cites W1971573366 @default.
- W2045672024 cites W1972315551 @default.
- W2045672024 cites W1975272848 @default.
- W2045672024 cites W1981966786 @default.
- W2045672024 cites W1982720139 @default.
- W2045672024 cites W1992258823 @default.
- W2045672024 cites W1993790304 @default.
- W2045672024 cites W2005761042 @default.
- W2045672024 cites W2006095588 @default.
- W2045672024 cites W2009730014 @default.
- W2045672024 cites W2027231495 @default.
- W2045672024 cites W2043876612 @default.
- W2045672024 cites W2048026594 @default.
- W2045672024 cites W2048103964 @default.
- W2045672024 cites W2061211935 @default.
- W2045672024 cites W2072676411 @default.
- W2045672024 cites W2073983148 @default.
- W2045672024 cites W2089776517 @default.
- W2045672024 cites W2090379089 @default.
- W2045672024 cites W2090737785 @default.
- W2045672024 cites W2150061623 @default.
- W2045672024 cites W2165444694 @default.
- W2045672024 cites W2329118847 @default.
- W2045672024 cites W2398939765 @default.
- W2045672024 cites W2410247176 @default.
- W2045672024 cites W2413618635 @default.
- W2045672024 cites W2464755522 @default.
- W2045672024 cites W54424760 @default.
- W2045672024 doi "https://doi.org/10.1097/00005392-199805000-00107" @default.
- W2045672024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9554407" @default.
- W2045672024 hasPublicationYear "1998" @default.
- W2045672024 type Work @default.
- W2045672024 sameAs 2045672024 @default.
- W2045672024 citedByCount "23" @default.
- W2045672024 countsByYear W20456720242013 @default.
- W2045672024 countsByYear W20456720242015 @default.
- W2045672024 countsByYear W20456720242017 @default.
- W2045672024 countsByYear W20456720242021 @default.
- W2045672024 crossrefType "journal-article" @default.
- W2045672024 hasAuthorship W2045672024A5005420288 @default.
- W2045672024 hasAuthorship W2045672024A5011229153 @default.
- W2045672024 hasAuthorship W2045672024A5027827602 @default.
- W2045672024 hasAuthorship W2045672024A5036478814 @default.
- W2045672024 hasAuthorship W2045672024A5050490033 @default.
- W2045672024 hasAuthorship W2045672024A5064597485 @default.
- W2045672024 hasAuthorship W2045672024A5069523078 @default.
- W2045672024 hasConcept C126322002 @default.
- W2045672024 hasConcept C15920480 @default.
- W2045672024 hasConcept C178790620 @default.
- W2045672024 hasConcept C185592680 @default.
- W2045672024 hasConcept C2776179656 @default.
- W2045672024 hasConcept C2776351790 @default.
- W2045672024 hasConcept C2781206178 @default.
- W2045672024 hasConcept C2909497934 @default.
- W2045672024 hasConcept C519063684 @default.
- W2045672024 hasConcept C521977710 @default.
- W2045672024 hasConcept C71924100 @default.
- W2045672024 hasConceptScore W2045672024C126322002 @default.
- W2045672024 hasConceptScore W2045672024C15920480 @default.
- W2045672024 hasConceptScore W2045672024C178790620 @default.
- W2045672024 hasConceptScore W2045672024C185592680 @default.
- W2045672024 hasConceptScore W2045672024C2776179656 @default.
- W2045672024 hasConceptScore W2045672024C2776351790 @default.
- W2045672024 hasConceptScore W2045672024C2781206178 @default.
- W2045672024 hasConceptScore W2045672024C2909497934 @default.
- W2045672024 hasConceptScore W2045672024C519063684 @default.
- W2045672024 hasConceptScore W2045672024C521977710 @default.
- W2045672024 hasConceptScore W2045672024C71924100 @default.
- W2045672024 hasIssue "5" @default.
- W2045672024 hasLocation W20456720241 @default.
- W2045672024 hasLocation W20456720242 @default.
- W2045672024 hasOpenAccess W2045672024 @default.
- W2045672024 hasPrimaryLocation W20456720241 @default.
- W2045672024 hasRelatedWork W105971956 @default.
- W2045672024 hasRelatedWork W1508049235 @default.
- W2045672024 hasRelatedWork W2058832365 @default.
- W2045672024 hasRelatedWork W2088928489 @default.
- W2045672024 hasRelatedWork W2151726801 @default.
- W2045672024 hasRelatedWork W2411078172 @default.
- W2045672024 hasRelatedWork W2803711368 @default.
- W2045672024 hasRelatedWork W2886961099 @default.
- W2045672024 hasRelatedWork W2905193867 @default.
- W2045672024 hasRelatedWork W39899169 @default.