Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045682383> ?p ?o ?g. }
- W2045682383 endingPage "662" @default.
- W2045682383 startingPage "652" @default.
- W2045682383 abstract "Knowledge of the distribution of plant species is essential for planning management and conservation actions, especially for economically important species. Available data on plant species in the Amazon usually do not represent their whole area of occurrence. The most widely used approach to infer predictions on species occurrence is niche modelling, which consists of correlating records of species with environmental conditions in their occurrence areas, generating maps with the potential distribution based on a combination of environmental features suitable for each species. The main objective of this study was to evaluate the ability of modelling to improve knowledge on the distribution of six timber species and six palm trees in the Amazon, and whether these models can benefit from using data from field surveys added to those of biological collections. Models were generated using the Maxent algorithm. All models generated showed a low extrinsic omission rate (TOE) and AUC above 0.75. Areas predicted for timber species were more consistent with empirical knowledge than those predicted for palm trees, probably due to the greater amount of occurrence sites available for timber species, especially after adding data from field surveys. The extent of the predicted area and the Jaccard index were used to compare the maps after insertion of field survey data. There was a large difference in extent just for two species, one timber and one palm, and a reduction in the predicted area for one species, Swietenia macrophylla. The application of the Jaccard index resulted in values between 0.41 and 0.65 for timber species, reinforcing that the inclusion of field survey data changed predicted areas. For palms, the similar extent of predicted areas and Jaccard values above 0.80, indicated a subtle difference between maps generated before and after the inclusion of field survey records, probably due to the addition of fewer records. The exception was Astrocaryum murumuru, for which the new records increased the extent of the predicted area. The niche models associated with field studies can contribute enormously to increase knowledge concerning the current distribution of species, but new field surveys should be carefully designed to cover wide and undersampled areas. However, it is necessary to consider that this strategy can only be adopted for species with clearly distinctive features, for which field identifications are reliable." @default.
- W2045682383 created "2016-06-24" @default.
- W2045682383 creator A5000661237 @default.
- W2045682383 creator A5003816127 @default.
- W2045682383 creator A5044635586 @default.
- W2045682383 date "2013-12-01" @default.
- W2045682383 modified "2023-09-30" @default.
- W2045682383 title "Niche modelling for twelve plant species (six timber species and six palm trees) in the Amazon region, using collection and field survey data" @default.
- W2045682383 cites W1575332305 @default.
- W2045682383 cites W1849474684 @default.
- W2045682383 cites W1974545607 @default.
- W2045682383 cites W1979759959 @default.
- W2045682383 cites W1985425676 @default.
- W2045682383 cites W2000470411 @default.
- W2045682383 cites W2005405996 @default.
- W2045682383 cites W2028197572 @default.
- W2045682383 cites W2035950812 @default.
- W2045682383 cites W2037101544 @default.
- W2045682383 cites W2055764609 @default.
- W2045682383 cites W2057197683 @default.
- W2045682383 cites W2074074427 @default.
- W2045682383 cites W2078666091 @default.
- W2045682383 cites W2079018504 @default.
- W2045682383 cites W2086765130 @default.
- W2045682383 cites W2095240644 @default.
- W2045682383 cites W2098827790 @default.
- W2045682383 cites W2104285251 @default.
- W2045682383 cites W2111954076 @default.
- W2045682383 cites W2112315008 @default.
- W2045682383 cites W2112776483 @default.
- W2045682383 cites W2115268776 @default.
- W2045682383 cites W2115376758 @default.
- W2045682383 cites W2120160157 @default.
- W2045682383 cites W2121925016 @default.
- W2045682383 cites W2128506197 @default.
- W2045682383 cites W2137144458 @default.
- W2045682383 cites W2138788795 @default.
- W2045682383 cites W2139416101 @default.
- W2045682383 cites W2141014056 @default.
- W2045682383 cites W2144373185 @default.
- W2045682383 cites W2156052711 @default.
- W2045682383 cites W2160547448 @default.
- W2045682383 cites W2161158984 @default.
- W2045682383 cites W2162776595 @default.
- W2045682383 cites W2163457179 @default.
- W2045682383 cites W2170473141 @default.
- W2045682383 cites W2176964305 @default.
- W2045682383 cites W2254366651 @default.
- W2045682383 cites W2300783379 @default.
- W2045682383 cites W2729167500 @default.
- W2045682383 cites W3045022628 @default.
- W2045682383 cites W336503226 @default.
- W2045682383 cites W4242500050 @default.
- W2045682383 doi "https://doi.org/10.1016/j.foreco.2013.08.064" @default.
- W2045682383 hasPublicationYear "2013" @default.
- W2045682383 type Work @default.
- W2045682383 sameAs 2045682383 @default.
- W2045682383 citedByCount "13" @default.
- W2045682383 countsByYear W20456823832014 @default.
- W2045682383 countsByYear W20456823832016 @default.
- W2045682383 countsByYear W20456823832017 @default.
- W2045682383 countsByYear W20456823832018 @default.
- W2045682383 countsByYear W20456823832019 @default.
- W2045682383 countsByYear W20456823832020 @default.
- W2045682383 countsByYear W20456823832021 @default.
- W2045682383 countsByYear W20456823832022 @default.
- W2045682383 crossrefType "journal-article" @default.
- W2045682383 hasAuthorship W2045682383A5000661237 @default.
- W2045682383 hasAuthorship W2045682383A5003816127 @default.
- W2045682383 hasAuthorship W2045682383A5044635586 @default.
- W2045682383 hasConcept C102715595 @default.
- W2045682383 hasConcept C105795698 @default.
- W2045682383 hasConcept C121332964 @default.
- W2045682383 hasConcept C132124917 @default.
- W2045682383 hasConcept C153991713 @default.
- W2045682383 hasConcept C180395843 @default.
- W2045682383 hasConcept C185933670 @default.
- W2045682383 hasConcept C18903297 @default.
- W2045682383 hasConcept C203519979 @default.
- W2045682383 hasConcept C205649164 @default.
- W2045682383 hasConcept C33923547 @default.
- W2045682383 hasConcept C535291247 @default.
- W2045682383 hasConcept C54286561 @default.
- W2045682383 hasConcept C62520636 @default.
- W2045682383 hasConcept C73555534 @default.
- W2045682383 hasConcept C86803240 @default.
- W2045682383 hasConcept C94598645 @default.
- W2045682383 hasConcept C97137747 @default.
- W2045682383 hasConceptScore W2045682383C102715595 @default.
- W2045682383 hasConceptScore W2045682383C105795698 @default.
- W2045682383 hasConceptScore W2045682383C121332964 @default.
- W2045682383 hasConceptScore W2045682383C132124917 @default.
- W2045682383 hasConceptScore W2045682383C153991713 @default.
- W2045682383 hasConceptScore W2045682383C180395843 @default.
- W2045682383 hasConceptScore W2045682383C185933670 @default.
- W2045682383 hasConceptScore W2045682383C18903297 @default.
- W2045682383 hasConceptScore W2045682383C203519979 @default.
- W2045682383 hasConceptScore W2045682383C205649164 @default.