Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045700488> ?p ?o ?g. }
- W2045700488 endingPage "1184" @default.
- W2045700488 startingPage "1173" @default.
- W2045700488 abstract "Hydraulic conductivity is the essential parameter for groundwater modeling and management. Yet estimation of hydraulic conductivity in a heterogeneous aquifer is expensive and time consuming. In this study; artificial intelligence (AI) models of Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Multilayer Perceptron Neural Network associated with Levenberg–Marquardt (ANN), and Neuro-Fuzzy (NF) were applied to estimate hydraulic conductivity using hydrogeological and geoelectrical survey data obtained from Tasuj Plain Aquifer, Northwest of Iran. The results revealed that SFL and NF produced acceptable performance while ANN and MFL had poor prediciton. A supervised intelligent committee machine (SICM), which combines the results of individual AI models using a supervised artificial neural network, was developed for better prediction of the hydraulic conductivity in Tasuj plain. The performance of SICM was also compared to those of the simple averaging and weighted averaging intelligent committee machine (ICM) methods. The SICM model produced reliable estimates of hydraulic conductivity in heterogeneous aquifers." @default.
- W2045700488 created "2016-06-24" @default.
- W2045700488 creator A5000442615 @default.
- W2045700488 creator A5040000758 @default.
- W2045700488 creator A5064633518 @default.
- W2045700488 date "2014-02-17" @default.
- W2045700488 modified "2023-09-26" @default.
- W2045700488 title "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation" @default.
- W2045700488 cites W1965204367 @default.
- W2045700488 cites W1967292503 @default.
- W2045700488 cites W1969399508 @default.
- W2045700488 cites W1970695256 @default.
- W2045700488 cites W1975827138 @default.
- W2045700488 cites W1977643549 @default.
- W2045700488 cites W1978784821 @default.
- W2045700488 cites W1979653734 @default.
- W2045700488 cites W1983083989 @default.
- W2045700488 cites W1983211566 @default.
- W2045700488 cites W1988210039 @default.
- W2045700488 cites W1992176519 @default.
- W2045700488 cites W1998589764 @default.
- W2045700488 cites W1998808712 @default.
- W2045700488 cites W2001063743 @default.
- W2045700488 cites W2001645181 @default.
- W2045700488 cites W2003913953 @default.
- W2045700488 cites W2008558681 @default.
- W2045700488 cites W2009218392 @default.
- W2045700488 cites W2009516836 @default.
- W2045700488 cites W2021245834 @default.
- W2045700488 cites W2024392312 @default.
- W2045700488 cites W2026217962 @default.
- W2045700488 cites W2029234118 @default.
- W2045700488 cites W2036354368 @default.
- W2045700488 cites W2041534329 @default.
- W2045700488 cites W2045388378 @default.
- W2045700488 cites W2059573404 @default.
- W2045700488 cites W2062955239 @default.
- W2045700488 cites W2063778450 @default.
- W2045700488 cites W2064395451 @default.
- W2045700488 cites W2067165843 @default.
- W2045700488 cites W2074799864 @default.
- W2045700488 cites W2074987129 @default.
- W2045700488 cites W2075549266 @default.
- W2045700488 cites W2077262972 @default.
- W2045700488 cites W2078557532 @default.
- W2045700488 cites W2079250977 @default.
- W2045700488 cites W2079325629 @default.
- W2045700488 cites W2080892445 @default.
- W2045700488 cites W2090635835 @default.
- W2045700488 cites W2092159336 @default.
- W2045700488 cites W2103988087 @default.
- W2045700488 cites W2112117949 @default.
- W2045700488 cites W2116208828 @default.
- W2045700488 cites W2126076545 @default.
- W2045700488 cites W2130915832 @default.
- W2045700488 cites W2134645325 @default.
- W2045700488 cites W2137983211 @default.
- W2045700488 cites W2139336113 @default.
- W2045700488 cites W2147202728 @default.
- W2045700488 cites W2154304952 @default.
- W2045700488 cites W2156415214 @default.
- W2045700488 cites W2163786120 @default.
- W2045700488 cites W2165313910 @default.
- W2045700488 cites W2172058136 @default.
- W2045700488 cites W2552577439 @default.
- W2045700488 cites W3017323153 @default.
- W2045700488 cites W4211007335 @default.
- W2045700488 cites W4253360490 @default.
- W2045700488 doi "https://doi.org/10.1007/s11269-014-0553-y" @default.
- W2045700488 hasPublicationYear "2014" @default.
- W2045700488 type Work @default.
- W2045700488 sameAs 2045700488 @default.
- W2045700488 citedByCount "42" @default.
- W2045700488 countsByYear W20457004882015 @default.
- W2045700488 countsByYear W20457004882016 @default.
- W2045700488 countsByYear W20457004882017 @default.
- W2045700488 countsByYear W20457004882018 @default.
- W2045700488 countsByYear W20457004882019 @default.
- W2045700488 countsByYear W20457004882020 @default.
- W2045700488 countsByYear W20457004882021 @default.
- W2045700488 countsByYear W20457004882022 @default.
- W2045700488 countsByYear W20457004882023 @default.
- W2045700488 crossrefType "journal-article" @default.
- W2045700488 hasAuthorship W2045700488A5000442615 @default.
- W2045700488 hasAuthorship W2045700488A5040000758 @default.
- W2045700488 hasAuthorship W2045700488A5064633518 @default.
- W2045700488 hasBestOaLocation W20457004882 @default.
- W2045700488 hasConcept C119857082 @default.
- W2045700488 hasConcept C124101348 @default.
- W2045700488 hasConcept C127313418 @default.
- W2045700488 hasConcept C154945302 @default.
- W2045700488 hasConcept C159390177 @default.
- W2045700488 hasConcept C159750122 @default.
- W2045700488 hasConcept C179717631 @default.
- W2045700488 hasConcept C187320778 @default.
- W2045700488 hasConcept C33556824 @default.
- W2045700488 hasConcept C41008148 @default.
- W2045700488 hasConcept C50644808 @default.