Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045778932> ?p ?o ?g. }
- W2045778932 endingPage "644" @default.
- W2045778932 startingPage "602" @default.
- W2045778932 abstract "The Dirac variation-of-constants method has long provided a basis for perturbative solution of the time-dependent Schrodinger equation. In spite of its widespread utilization, certain aspects of the method have been discussed only superficially and remain somewhat obscure. The present review attempts to clarify some of these points, particularly those related to secular and normalization terms. Secular terms arise from an over-all time-dependent phase in the wave function, while normalization terms preserve the norm of the wave function. A proper treatment of the secular terms is essential in the presence of a physically significant level shift that can produce secular divergences in the time-dependent perturbation functions. The normalization terms are always important, although the formulation of a simple method for including them is of greatest utility in applications requiring higher-order perturbation theory (e.g., nonlinear optical phenomena), where difficulties have arisen in previous treatments. Although the Dirac perturbation technique includes the correct secular and normalization terms when properly executed, it is convenient to reinterpret the perturbation problem so that the secular and normalization terms can be factored from the wave function to all orders. It is shown that an appropriate over-all multiplicative, time-dependent normalization and phase factor can be obtained, and that it is simply the amplitude for finding the system in the unperturbed eigenstate at any time $t$. The regular part of the wave function remaining after this factorization provides a complete description of the physical properties of the system of interest and determines the over-all normalization and phase, as well. Most important, the regular function and its perturbation expansion satisfy equations which are more convenient for computational applications than are the customary Dirac equations, and, in contrast to the latter, they reduce directly to the familiar time-independent perturbation equations in the static limit. To illustrate the general development, the model problem of a linearly perturbed harmonic oscillator and the static, harmonic, and electromagnetic perturbations of arbitrary quantum-mechanical systems are treated explicitly. In the case of an adiabatically applied static perturbation, the familiar adiabatic theorem is recovered with the over-all phase factor giving the perturbed eigenvalue, while in the case of an harmonic perturbation, the overall phase factor obtained includes the system level shift appropriate for a quasiperiodic state. For an electromagnetic perturbation, compact expressions are obtained for various nonlinear optical susceptibilities in forms suitable for computations. Time-dependent Hartree-Fock approximations are treated explicity to demonstrate that difficulties can arise when normalization and secular terms are not extracted prior to application of the perturbation formalism. Connection is also made with other methods which can be employed to eliminate secular and normalization terms from the wave function; these include a projection procedure and multiple-time-scales perturbation theory. The elimination of secular divergences from the perturbation functions is shown to be important for the construction of a valid Fourier transform. Secular and normalization terms also arise in connection with variational principles for the time-dependent Schrodinger equation. By employing the Frenkel variational principle and an ansatz for the total wave function that explicitly isolates the secular and normalization terms, a computationally convenient variational functional is obtained. This form of the Frenkel principle provides a bound to the system level shift induced by an oscillatory perturbation and is equivalent to the Ritz variational principle in the static limit. Explicit expressions for the variational functional in the Hartree-Fock approximations are derived in forms suitable for computational applications to the interactions of radiation and matter." @default.
- W2045778932 created "2016-06-24" @default.
- W2045778932 creator A5024907288 @default.
- W2045778932 creator A5026905082 @default.
- W2045778932 creator A5076499540 @default.
- W2045778932 date "1972-07-01" @default.
- W2045778932 modified "2023-10-10" @default.
- W2045778932 title "Aspects of Time-Dependent Perturbation Theory" @default.
- W2045778932 cites W1483196670 @default.
- W2045778932 cites W1530983917 @default.
- W2045778932 cites W1533328589 @default.
- W2045778932 cites W1540824747 @default.
- W2045778932 cites W1963811960 @default.
- W2045778932 cites W1964169685 @default.
- W2045778932 cites W1965055888 @default.
- W2045778932 cites W1965838363 @default.
- W2045778932 cites W1966609179 @default.
- W2045778932 cites W1968238268 @default.
- W2045778932 cites W1968929680 @default.
- W2045778932 cites W1969544113 @default.
- W2045778932 cites W1970207523 @default.
- W2045778932 cites W1972065107 @default.
- W2045778932 cites W1973078616 @default.
- W2045778932 cites W1973427713 @default.
- W2045778932 cites W1973686325 @default.
- W2045778932 cites W1973902103 @default.
- W2045778932 cites W1973946946 @default.
- W2045778932 cites W1975266602 @default.
- W2045778932 cites W1975697046 @default.
- W2045778932 cites W1976021442 @default.
- W2045778932 cites W1976411647 @default.
- W2045778932 cites W1977577098 @default.
- W2045778932 cites W1977833535 @default.
- W2045778932 cites W1978401259 @default.
- W2045778932 cites W1979076588 @default.
- W2045778932 cites W1980407944 @default.
- W2045778932 cites W1980560051 @default.
- W2045778932 cites W1980674788 @default.
- W2045778932 cites W1980848359 @default.
- W2045778932 cites W1981511701 @default.
- W2045778932 cites W1982622368 @default.
- W2045778932 cites W1985721794 @default.
- W2045778932 cites W1988522428 @default.
- W2045778932 cites W1988841563 @default.
- W2045778932 cites W1989585760 @default.
- W2045778932 cites W1989594114 @default.
- W2045778932 cites W1989715556 @default.
- W2045778932 cites W1989916682 @default.
- W2045778932 cites W1991331262 @default.
- W2045778932 cites W1992065208 @default.
- W2045778932 cites W1993088345 @default.
- W2045778932 cites W1993897470 @default.
- W2045778932 cites W1995464544 @default.
- W2045778932 cites W1997093580 @default.
- W2045778932 cites W1997937478 @default.
- W2045778932 cites W2002004528 @default.
- W2045778932 cites W2003577463 @default.
- W2045778932 cites W2004168893 @default.
- W2045778932 cites W2004461229 @default.
- W2045778932 cites W2004657965 @default.
- W2045778932 cites W2004871937 @default.
- W2045778932 cites W2005066084 @default.
- W2045778932 cites W2006472859 @default.
- W2045778932 cites W2007396466 @default.
- W2045778932 cites W2009599926 @default.
- W2045778932 cites W2010961942 @default.
- W2045778932 cites W2012414381 @default.
- W2045778932 cites W2012895044 @default.
- W2045778932 cites W2013233911 @default.
- W2045778932 cites W2015183186 @default.
- W2045778932 cites W2016070599 @default.
- W2045778932 cites W2016265267 @default.
- W2045778932 cites W2016800011 @default.
- W2045778932 cites W2017022632 @default.
- W2045778932 cites W2018808860 @default.
- W2045778932 cites W2020687655 @default.
- W2045778932 cites W2022875513 @default.
- W2045778932 cites W2023339287 @default.
- W2045778932 cites W2026683877 @default.
- W2045778932 cites W2028288889 @default.
- W2045778932 cites W2031560824 @default.
- W2045778932 cites W2031828766 @default.
- W2045778932 cites W2032124073 @default.
- W2045778932 cites W2036069553 @default.
- W2045778932 cites W2037939406 @default.
- W2045778932 cites W2039175949 @default.
- W2045778932 cites W2039763880 @default.
- W2045778932 cites W2040153477 @default.
- W2045778932 cites W2040233203 @default.
- W2045778932 cites W2041117347 @default.
- W2045778932 cites W2041774564 @default.
- W2045778932 cites W2043521188 @default.
- W2045778932 cites W2045466602 @default.
- W2045778932 cites W2045570144 @default.
- W2045778932 cites W2046607604 @default.
- W2045778932 cites W2052493180 @default.
- W2045778932 cites W2054034843 @default.
- W2045778932 cites W2057251624 @default.