Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045793544> ?p ?o ?g. }
- W2045793544 endingPage "1287" @default.
- W2045793544 startingPage "1277" @default.
- W2045793544 abstract "Precise short-term load forecasting (STLF) plays a key role in unit commitment, maintenance and economic dispatch problems. Employing a subjective and arbitrary predictive step size is one of the most important factors causing the low forecasting accuracy. To solve this problem, the largest Lyapunov exponent is adopted to estimate the maximal predictive step size so that the step size in the forecasting is no more than this maximal one. In addition, in this paper a seldom used forecasting model, which is based on the non-linear fractal extrapolation (NLFE) algorithm, is considered to develop the accuracy of predictions. The suitability and superiority of the two solutions are illustrated through an application to real load forecasting using New South Wales electricity load data from the Australian National Electricity Market. Meanwhile, three forecasting models: the gray model, the seasonal autoregressive integrated moving average approach and the support vector machine method, which received high approval in STLF, are selected to compare with the NLFE algorithm. Comparison results also show that the NLFE model is outstanding, effective, practical and feasible." @default.
- W2045793544 created "2016-06-24" @default.
- W2045793544 creator A5010208763 @default.
- W2045793544 creator A5041466031 @default.
- W2045793544 creator A5044720245 @default.
- W2045793544 creator A5055840823 @default.
- W2045793544 creator A5073012750 @default.
- W2045793544 date "2012-09-01" @default.
- W2045793544 modified "2023-09-27" @default.
- W2045793544 title "Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting" @default.
- W2045793544 cites W113919739 @default.
- W2045793544 cites W1964368703 @default.
- W2045793544 cites W1964436080 @default.
- W2045793544 cites W1968112823 @default.
- W2045793544 cites W1978979628 @default.
- W2045793544 cites W1982363472 @default.
- W2045793544 cites W1983865796 @default.
- W2045793544 cites W1984051156 @default.
- W2045793544 cites W1985815014 @default.
- W2045793544 cites W1992204645 @default.
- W2045793544 cites W1992278273 @default.
- W2045793544 cites W1996312066 @default.
- W2045793544 cites W1998293835 @default.
- W2045793544 cites W2005683380 @default.
- W2045793544 cites W2014279405 @default.
- W2045793544 cites W2016211617 @default.
- W2045793544 cites W2026241078 @default.
- W2045793544 cites W2027600615 @default.
- W2045793544 cites W2037501763 @default.
- W2045793544 cites W2037615091 @default.
- W2045793544 cites W2055653514 @default.
- W2045793544 cites W2057522376 @default.
- W2045793544 cites W2065475808 @default.
- W2045793544 cites W2069945715 @default.
- W2045793544 cites W2072403301 @default.
- W2045793544 cites W2073178078 @default.
- W2045793544 cites W2080924928 @default.
- W2045793544 cites W2088181733 @default.
- W2045793544 cites W2092172498 @default.
- W2045793544 cites W2094054185 @default.
- W2045793544 cites W2094583358 @default.
- W2045793544 cites W2094622687 @default.
- W2045793544 cites W2121246861 @default.
- W2045793544 cites W2126831543 @default.
- W2045793544 cites W2144660204 @default.
- W2045793544 cites W2151850816 @default.
- W2045793544 cites W2152254020 @default.
- W2045793544 cites W2166651278 @default.
- W2045793544 cites W2168138569 @default.
- W2045793544 cites W3122607558 @default.
- W2045793544 doi "https://doi.org/10.1016/j.chaos.2012.06.009" @default.
- W2045793544 hasPublicationYear "2012" @default.
- W2045793544 type Work @default.
- W2045793544 sameAs 2045793544 @default.
- W2045793544 citedByCount "27" @default.
- W2045793544 countsByYear W20457935442013 @default.
- W2045793544 countsByYear W20457935442014 @default.
- W2045793544 countsByYear W20457935442015 @default.
- W2045793544 countsByYear W20457935442016 @default.
- W2045793544 countsByYear W20457935442017 @default.
- W2045793544 countsByYear W20457935442018 @default.
- W2045793544 countsByYear W20457935442019 @default.
- W2045793544 countsByYear W20457935442020 @default.
- W2045793544 countsByYear W20457935442021 @default.
- W2045793544 countsByYear W20457935442022 @default.
- W2045793544 countsByYear W20457935442023 @default.
- W2045793544 crossrefType "journal-article" @default.
- W2045793544 hasAuthorship W2045793544A5010208763 @default.
- W2045793544 hasAuthorship W2045793544A5041466031 @default.
- W2045793544 hasAuthorship W2045793544A5044720245 @default.
- W2045793544 hasAuthorship W2045793544A5055840823 @default.
- W2045793544 hasAuthorship W2045793544A5073012750 @default.
- W2045793544 hasConcept C105795698 @default.
- W2045793544 hasConcept C11413529 @default.
- W2045793544 hasConcept C121332964 @default.
- W2045793544 hasConcept C126255220 @default.
- W2045793544 hasConcept C132459708 @default.
- W2045793544 hasConcept C134306372 @default.
- W2045793544 hasConcept C149782125 @default.
- W2045793544 hasConcept C151406439 @default.
- W2045793544 hasConcept C154945302 @default.
- W2045793544 hasConcept C159877910 @default.
- W2045793544 hasConcept C175706884 @default.
- W2045793544 hasConcept C191544260 @default.
- W2045793544 hasConcept C24338571 @default.
- W2045793544 hasConcept C2777052490 @default.
- W2045793544 hasConcept C33923547 @default.
- W2045793544 hasConcept C40636538 @default.
- W2045793544 hasConcept C41008148 @default.
- W2045793544 hasConcept C61797465 @default.
- W2045793544 hasConcept C62520636 @default.
- W2045793544 hasConcept C96835011 @default.
- W2045793544 hasConceptScore W2045793544C105795698 @default.
- W2045793544 hasConceptScore W2045793544C11413529 @default.
- W2045793544 hasConceptScore W2045793544C121332964 @default.
- W2045793544 hasConceptScore W2045793544C126255220 @default.
- W2045793544 hasConceptScore W2045793544C132459708 @default.
- W2045793544 hasConceptScore W2045793544C134306372 @default.