Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045868367> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2045868367 endingPage "432" @default.
- W2045868367 startingPage "425" @default.
- W2045868367 abstract "Ionospheric refraction is one of the most damaging effects on GPS signal. This effect is proportional to the Total Electron Content (TEC), which is the number of free electrons contained in the ionospheric layer. Once the TEC is known, it is possible to determine the delay caused by the ionosphere on GPS signal. This ionospheric delay is particularly a problem for single frequency receivers, which cannot eliminate the ionospheric delay by combining observations at two frequencies. Single frequency users rely on applying corrections based on prediction models or on regional models formed based on actual data collected by a network of receivers. It is necessary to use models that tell the single frequency users how large the ionospheric refraction is. Such is the case of which the GPS broadcast message carries parameters of the Klobuchar model. One other alternative to single frequency users is to create a regional model based on IGS TEC maps. In this case, the regional behavior of ionosphere is modeled in a way that it is possible to estimate the TEC values inside or near this region. This regional model can be based on artificial neural network. In this paper, an approach to modeling the ionospheric Total Electron Content (TEC) based on artificial neural network is presented. The goal of this paper is to estimate Vertical Total Electron Content (VTEC) for void areas and to avoid the gap which occurs between the results of the Global Ionosphere Map (GIM) from two consecutive sessions using ANN to produce high resolution ionospheric model to serve the single frequency receiver. The estimation method and test results of the proposed method indicate that the difference between predicted and observation values of VTEC is very small." @default.
- W2045868367 created "2016-06-24" @default.
- W2045868367 creator A5061235242 @default.
- W2045868367 date "2013-09-01" @default.
- W2045868367 modified "2023-10-04" @default.
- W2045868367 title "Artificial neural network as a model for ionospheric TEC map to serve the single frequency receiver" @default.
- W2045868367 cites W1981476079 @default.
- W2045868367 cites W2022395096 @default.
- W2045868367 cites W2022923993 @default.
- W2045868367 cites W2023819439 @default.
- W2045868367 cites W2031693634 @default.
- W2045868367 cites W2070865054 @default.
- W2045868367 cites W2087572809 @default.
- W2045868367 cites W2964749716 @default.
- W2045868367 doi "https://doi.org/10.1016/j.aej.2013.05.007" @default.
- W2045868367 hasPublicationYear "2013" @default.
- W2045868367 type Work @default.
- W2045868367 sameAs 2045868367 @default.
- W2045868367 citedByCount "13" @default.
- W2045868367 countsByYear W20458683672016 @default.
- W2045868367 countsByYear W20458683672017 @default.
- W2045868367 countsByYear W20458683672018 @default.
- W2045868367 countsByYear W20458683672019 @default.
- W2045868367 countsByYear W20458683672020 @default.
- W2045868367 countsByYear W20458683672021 @default.
- W2045868367 countsByYear W20458683672022 @default.
- W2045868367 countsByYear W20458683672023 @default.
- W2045868367 crossrefType "journal-article" @default.
- W2045868367 hasAuthorship W2045868367A5061235242 @default.
- W2045868367 hasBestOaLocation W20458683671 @default.
- W2045868367 hasConcept C116403925 @default.
- W2045868367 hasConcept C127313418 @default.
- W2045868367 hasConcept C12957241 @default.
- W2045868367 hasConcept C13280743 @default.
- W2045868367 hasConcept C154945302 @default.
- W2045868367 hasConcept C165391973 @default.
- W2045868367 hasConcept C176379880 @default.
- W2045868367 hasConcept C198613851 @default.
- W2045868367 hasConcept C41008148 @default.
- W2045868367 hasConcept C50644808 @default.
- W2045868367 hasConcept C60229501 @default.
- W2045868367 hasConcept C62649853 @default.
- W2045868367 hasConcept C76155785 @default.
- W2045868367 hasConcept C8058405 @default.
- W2045868367 hasConceptScore W2045868367C116403925 @default.
- W2045868367 hasConceptScore W2045868367C127313418 @default.
- W2045868367 hasConceptScore W2045868367C12957241 @default.
- W2045868367 hasConceptScore W2045868367C13280743 @default.
- W2045868367 hasConceptScore W2045868367C154945302 @default.
- W2045868367 hasConceptScore W2045868367C165391973 @default.
- W2045868367 hasConceptScore W2045868367C176379880 @default.
- W2045868367 hasConceptScore W2045868367C198613851 @default.
- W2045868367 hasConceptScore W2045868367C41008148 @default.
- W2045868367 hasConceptScore W2045868367C50644808 @default.
- W2045868367 hasConceptScore W2045868367C60229501 @default.
- W2045868367 hasConceptScore W2045868367C62649853 @default.
- W2045868367 hasConceptScore W2045868367C76155785 @default.
- W2045868367 hasConceptScore W2045868367C8058405 @default.
- W2045868367 hasIssue "3" @default.
- W2045868367 hasLocation W20458683671 @default.
- W2045868367 hasOpenAccess W2045868367 @default.
- W2045868367 hasPrimaryLocation W20458683671 @default.
- W2045868367 hasRelatedWork W1639283039 @default.
- W2045868367 hasRelatedWork W2068740554 @default.
- W2045868367 hasRelatedWork W2097564540 @default.
- W2045868367 hasRelatedWork W2369735781 @default.
- W2045868367 hasRelatedWork W2391535675 @default.
- W2045868367 hasRelatedWork W7978172 @default.
- W2045868367 hasRelatedWork W95929932 @default.
- W2045868367 hasRelatedWork W2288357425 @default.
- W2045868367 hasRelatedWork W2360751429 @default.
- W2045868367 hasRelatedWork W62049724 @default.
- W2045868367 hasVolume "52" @default.
- W2045868367 isParatext "false" @default.
- W2045868367 isRetracted "false" @default.
- W2045868367 magId "2045868367" @default.
- W2045868367 workType "article" @default.