Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045946797> ?p ?o ?g. }
- W2045946797 endingPage "221" @default.
- W2045946797 startingPage "210" @default.
- W2045946797 abstract "Semi-supervised learning has recently received considerable attention in machine learning. In this paper, we propose a novel diffusion maps based semi-supervised algorithm for dimensionality reduction, visualization and data representation. Unlike previous work which uses only geometric information for similarity metric construction, a distributional similarity metric is introduced to modify the geometric relationship of samples. This metric is defined using the posterior probability over the labels of each sample, which is learned through the Expectation–Maximization (EM) algorithm. The Euclidean distance between points on the intrinsic manifold learned by our proposed method is equal to the label-dependent “diffusion distance”, which is modified by the distributional similarity related metric, in the original space. Our algorithm preserves the local manifold structure in addition to separating samples in different classes, thus facilitates the classification. Encouraging experimental results on handwritten digits, Yale faces, UCI data sets and the Weizmann data set show that the algorithm can improve the classification accuracy significantly." @default.
- W2045946797 created "2016-06-24" @default.
- W2045946797 creator A5021984184 @default.
- W2045946797 creator A5037279553 @default.
- W2045946797 creator A5037688227 @default.
- W2045946797 creator A5063285882 @default.
- W2045946797 creator A5065964089 @default.
- W2045946797 creator A5082634513 @default.
- W2045946797 date "2013-03-01" @default.
- W2045946797 modified "2023-09-24" @default.
- W2045946797 title "A semi-supervised approach for dimensionality reduction with distributional similarity" @default.
- W2045946797 cites W1564277727 @default.
- W2045946797 cites W1584944240 @default.
- W2045946797 cites W1755467358 @default.
- W2045946797 cites W1969204685 @default.
- W2045946797 cites W2001141328 @default.
- W2045946797 cites W2001460034 @default.
- W2045946797 cites W2010399676 @default.
- W2045946797 cites W2020302785 @default.
- W2045946797 cites W2029978744 @default.
- W2045946797 cites W2053186076 @default.
- W2045946797 cites W2077776048 @default.
- W2045946797 cites W2080322700 @default.
- W2045946797 cites W2083515729 @default.
- W2045946797 cites W2097308346 @default.
- W2045946797 cites W2098829660 @default.
- W2045946797 cites W2103423124 @default.
- W2045946797 cites W2108333036 @default.
- W2045946797 cites W2116931983 @default.
- W2045946797 cites W2117553576 @default.
- W2045946797 cites W2118527389 @default.
- W2045946797 cites W2121647436 @default.
- W2045946797 cites W2141669543 @default.
- W2045946797 cites W2160459567 @default.
- W2045946797 cites W2161192203 @default.
- W2045946797 cites W2165095705 @default.
- W2045946797 cites W2167267197 @default.
- W2045946797 cites W2169039276 @default.
- W2045946797 cites W2962936676 @default.
- W2045946797 cites W3101325089 @default.
- W2045946797 cites W4213367101 @default.
- W2045946797 cites W4239510810 @default.
- W2045946797 doi "https://doi.org/10.1016/j.neucom.2012.09.023" @default.
- W2045946797 hasPublicationYear "2013" @default.
- W2045946797 type Work @default.
- W2045946797 sameAs 2045946797 @default.
- W2045946797 citedByCount "6" @default.
- W2045946797 countsByYear W20459467972014 @default.
- W2045946797 countsByYear W20459467972015 @default.
- W2045946797 countsByYear W20459467972016 @default.
- W2045946797 countsByYear W20459467972018 @default.
- W2045946797 crossrefType "journal-article" @default.
- W2045946797 hasAuthorship W2045946797A5021984184 @default.
- W2045946797 hasAuthorship W2045946797A5037279553 @default.
- W2045946797 hasAuthorship W2045946797A5037688227 @default.
- W2045946797 hasAuthorship W2045946797A5063285882 @default.
- W2045946797 hasAuthorship W2045946797A5065964089 @default.
- W2045946797 hasAuthorship W2045946797A5082634513 @default.
- W2045946797 hasConcept C103278499 @default.
- W2045946797 hasConcept C114614502 @default.
- W2045946797 hasConcept C115961682 @default.
- W2045946797 hasConcept C120174047 @default.
- W2045946797 hasConcept C127413603 @default.
- W2045946797 hasConcept C134306372 @default.
- W2045946797 hasConcept C151876577 @default.
- W2045946797 hasConcept C153180895 @default.
- W2045946797 hasConcept C154945302 @default.
- W2045946797 hasConcept C162324750 @default.
- W2045946797 hasConcept C176217482 @default.
- W2045946797 hasConcept C17744445 @default.
- W2045946797 hasConcept C186450821 @default.
- W2045946797 hasConcept C198043062 @default.
- W2045946797 hasConcept C199539241 @default.
- W2045946797 hasConcept C21547014 @default.
- W2045946797 hasConcept C2776359362 @default.
- W2045946797 hasConcept C33923547 @default.
- W2045946797 hasConcept C36464697 @default.
- W2045946797 hasConcept C41008148 @default.
- W2045946797 hasConcept C529865628 @default.
- W2045946797 hasConcept C55128770 @default.
- W2045946797 hasConcept C70518039 @default.
- W2045946797 hasConcept C78519656 @default.
- W2045946797 hasConcept C94625758 @default.
- W2045946797 hasConceptScore W2045946797C103278499 @default.
- W2045946797 hasConceptScore W2045946797C114614502 @default.
- W2045946797 hasConceptScore W2045946797C115961682 @default.
- W2045946797 hasConceptScore W2045946797C120174047 @default.
- W2045946797 hasConceptScore W2045946797C127413603 @default.
- W2045946797 hasConceptScore W2045946797C134306372 @default.
- W2045946797 hasConceptScore W2045946797C151876577 @default.
- W2045946797 hasConceptScore W2045946797C153180895 @default.
- W2045946797 hasConceptScore W2045946797C154945302 @default.
- W2045946797 hasConceptScore W2045946797C162324750 @default.
- W2045946797 hasConceptScore W2045946797C176217482 @default.
- W2045946797 hasConceptScore W2045946797C17744445 @default.
- W2045946797 hasConceptScore W2045946797C186450821 @default.
- W2045946797 hasConceptScore W2045946797C198043062 @default.
- W2045946797 hasConceptScore W2045946797C199539241 @default.