Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046019743> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2046019743 abstract "In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price." @default.
- W2046019743 created "2016-06-24" @default.
- W2046019743 creator A5006863930 @default.
- W2046019743 creator A5041550896 @default.
- W2046019743 creator A5053167211 @default.
- W2046019743 creator A5075632890 @default.
- W2046019743 creator A5089283900 @default.
- W2046019743 date "2012-05-01" @default.
- W2046019743 modified "2023-09-26" @default.
- W2046019743 title "ANN-based LMP forecasting in a distribution network with large penetration of DG" @default.
- W2046019743 cites W1981851483 @default.
- W2046019743 cites W1991410769 @default.
- W2046019743 cites W2020282632 @default.
- W2046019743 cites W2020753964 @default.
- W2046019743 cites W2027327378 @default.
- W2046019743 cites W2038070441 @default.
- W2046019743 cites W2040620186 @default.
- W2046019743 cites W2050893476 @default.
- W2046019743 cites W2112207757 @default.
- W2046019743 cites W2126737450 @default.
- W2046019743 cites W2139415285 @default.
- W2046019743 cites W2140486400 @default.
- W2046019743 cites W2141255893 @default.
- W2046019743 cites W2145761514 @default.
- W2046019743 cites W641902849 @default.
- W2046019743 doi "https://doi.org/10.1109/tdc.2012.6281677" @default.
- W2046019743 hasPublicationYear "2012" @default.
- W2046019743 type Work @default.
- W2046019743 sameAs 2046019743 @default.
- W2046019743 citedByCount "2" @default.
- W2046019743 countsByYear W20460197432015 @default.
- W2046019743 countsByYear W20460197432020 @default.
- W2046019743 crossrefType "proceedings-article" @default.
- W2046019743 hasAuthorship W2046019743A5006863930 @default.
- W2046019743 hasAuthorship W2046019743A5041550896 @default.
- W2046019743 hasAuthorship W2046019743A5053167211 @default.
- W2046019743 hasAuthorship W2046019743A5075632890 @default.
- W2046019743 hasAuthorship W2046019743A5089283900 @default.
- W2046019743 hasBestOaLocation W20460197432 @default.
- W2046019743 hasConcept C111919701 @default.
- W2046019743 hasConcept C11413529 @default.
- W2046019743 hasConcept C126255220 @default.
- W2046019743 hasConcept C127413603 @default.
- W2046019743 hasConcept C151730666 @default.
- W2046019743 hasConcept C154945302 @default.
- W2046019743 hasConcept C180505990 @default.
- W2046019743 hasConcept C206729178 @default.
- W2046019743 hasConcept C2779343474 @default.
- W2046019743 hasConcept C33923547 @default.
- W2046019743 hasConcept C41008148 @default.
- W2046019743 hasConcept C41045048 @default.
- W2046019743 hasConcept C42475967 @default.
- W2046019743 hasConcept C50644808 @default.
- W2046019743 hasConcept C86803240 @default.
- W2046019743 hasConceptScore W2046019743C111919701 @default.
- W2046019743 hasConceptScore W2046019743C11413529 @default.
- W2046019743 hasConceptScore W2046019743C126255220 @default.
- W2046019743 hasConceptScore W2046019743C127413603 @default.
- W2046019743 hasConceptScore W2046019743C151730666 @default.
- W2046019743 hasConceptScore W2046019743C154945302 @default.
- W2046019743 hasConceptScore W2046019743C180505990 @default.
- W2046019743 hasConceptScore W2046019743C206729178 @default.
- W2046019743 hasConceptScore W2046019743C2779343474 @default.
- W2046019743 hasConceptScore W2046019743C33923547 @default.
- W2046019743 hasConceptScore W2046019743C41008148 @default.
- W2046019743 hasConceptScore W2046019743C41045048 @default.
- W2046019743 hasConceptScore W2046019743C42475967 @default.
- W2046019743 hasConceptScore W2046019743C50644808 @default.
- W2046019743 hasConceptScore W2046019743C86803240 @default.
- W2046019743 hasLocation W20460197431 @default.
- W2046019743 hasLocation W20460197432 @default.
- W2046019743 hasOpenAccess W2046019743 @default.
- W2046019743 hasPrimaryLocation W20460197431 @default.
- W2046019743 hasRelatedWork W2110698131 @default.
- W2046019743 hasRelatedWork W2112078478 @default.
- W2046019743 hasRelatedWork W2119577004 @default.
- W2046019743 hasRelatedWork W2137803595 @default.
- W2046019743 hasRelatedWork W2156284123 @default.
- W2046019743 hasRelatedWork W2587888138 @default.
- W2046019743 hasRelatedWork W2736069062 @default.
- W2046019743 hasRelatedWork W2991146642 @default.
- W2046019743 hasRelatedWork W3142972743 @default.
- W2046019743 hasRelatedWork W4242300639 @default.
- W2046019743 isParatext "false" @default.
- W2046019743 isRetracted "false" @default.
- W2046019743 magId "2046019743" @default.
- W2046019743 workType "article" @default.