Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046244358> ?p ?o ?g. }
- W2046244358 endingPage "229" @default.
- W2046244358 startingPage "218" @default.
- W2046244358 abstract "The rise of sap in mangroves has puzzled plant physiologists for many decades. The current consensus is that negative pressures in the xylem exist which are sufficiently high to exceed the osmotic pressure of seawater (2.5 MPa). This implies that the radial reflection coefficients of the mangrove roots are equal to unity. However, direct pressure probe measurements in xylem vessels of the roots and stems of mangrove (Rhizophora mangle) grown in the laboratory or in the field yielded below-atmospheric, positive (absolute) pressure values. Slightly negative pressure values were recorded only occasionally. Xylem pressure did not change significantly when the plants were transferred from tap water to solutions containing up to 1700 mOsmol kg−1 NaCl. This indicates that the radial reflection coefficient of the roots for salt, and therefore the effective osmotic pressure of the external solution, was essentially zero as already reported for other halophytes. The low values of xylem tension measured with the xylem pressure probe were consistent with previously published data obtained using the vacuum/leafy twig technique. Values of xylem tension determined with these two methods were nearly two orders of magnitude smaller than those estimated for mangrove using the pressure chamber technique (−3 to −6MPa). Xylem pressure probe measurements and staining experiments with alcian blue and other dyes gave strong evidence that the xylem vessels contained viscous, mucilage- and/or protein-related compounds. Production of these compounds resulting from wound or other artifactual reactions was excluded. The very low sap flow rates of about 20–50 cm h−1 measured in these mangrove plants were consistent with the presence of high molecular weight polymeric substances in the xylem sap. The presence of viscous substances in the xylem sap of mangroves has the following implications for traditional xylem pressure measurement techniques, development of xylem tension, and longdistance water transport: (1) high external balancing pressures in the pressure chamber are needed to force xylem sap to the cut surface of the twig; (2) stable tensions much larger than 0.1 MPa can be developed only occasionally because viscous solutions provide nucleation sites for gas bubble formation; (3) the frequent presence of small gas bubbles in viscous solutions allows water transport by interfacial, gravity-independent streaming at gas/water interfaces and (4) the increased density of viscous solutions creates (gravity-dependent) convectional flows. Density-driven convectional flows and interfacial streaming, but also the very low radial reflection coefficient of the roots to NaCl are apparently the means by which R. mangle maintains water transport to its leaves despite the high salinity of the environment." @default.
- W2046244358 created "2016-06-24" @default.
- W2046244358 creator A5001722677 @default.
- W2046244358 creator A5012939174 @default.
- W2046244358 creator A5016549912 @default.
- W2046244358 creator A5050818691 @default.
- W2046244358 creator A5062841144 @default.
- W2046244358 creator A5066378935 @default.
- W2046244358 creator A5072901757 @default.
- W2046244358 creator A5076693365 @default.
- W2046244358 creator A5077983107 @default.
- W2046244358 creator A5078063544 @default.
- W2046244358 creator A5078410905 @default.
- W2046244358 date "1994-08-01" @default.
- W2046244358 modified "2023-10-02" @default.
- W2046244358 title "High Molecular Weight Organic Compounds in the Xylem Sap of Mangroves: Implications for Long‐Distance Water Transport" @default.
- W2046244358 cites W148934851 @default.
- W2046244358 cites W1542860671 @default.
- W2046244358 cites W1596311361 @default.
- W2046244358 cites W1976734414 @default.
- W2046244358 cites W1980132083 @default.
- W2046244358 cites W1982719714 @default.
- W2046244358 cites W1983139257 @default.
- W2046244358 cites W1984270202 @default.
- W2046244358 cites W1985592619 @default.
- W2046244358 cites W1986623917 @default.
- W2046244358 cites W1992678942 @default.
- W2046244358 cites W1994185414 @default.
- W2046244358 cites W1994988584 @default.
- W2046244358 cites W1996897442 @default.
- W2046244358 cites W2001133667 @default.
- W2046244358 cites W2005606276 @default.
- W2046244358 cites W2005882700 @default.
- W2046244358 cites W2010182284 @default.
- W2046244358 cites W2018444986 @default.
- W2046244358 cites W2022138826 @default.
- W2046244358 cites W2023399488 @default.
- W2046244358 cites W2029616149 @default.
- W2046244358 cites W2032201386 @default.
- W2046244358 cites W2034521685 @default.
- W2046244358 cites W2035432113 @default.
- W2046244358 cites W2036142209 @default.
- W2046244358 cites W2043360534 @default.
- W2046244358 cites W2043654019 @default.
- W2046244358 cites W2052922251 @default.
- W2046244358 cites W2053921420 @default.
- W2046244358 cites W2059651979 @default.
- W2046244358 cites W2076149249 @default.
- W2046244358 cites W2077199503 @default.
- W2046244358 cites W2077291799 @default.
- W2046244358 cites W2078310267 @default.
- W2046244358 cites W2083778516 @default.
- W2046244358 cites W2088056117 @default.
- W2046244358 cites W2088731327 @default.
- W2046244358 cites W2100895197 @default.
- W2046244358 cites W2106043179 @default.
- W2046244358 cites W2109231652 @default.
- W2046244358 cites W2113231298 @default.
- W2046244358 cites W2119897681 @default.
- W2046244358 cites W2132765877 @default.
- W2046244358 cites W2144653179 @default.
- W2046244358 cites W2144727169 @default.
- W2046244358 cites W2149069370 @default.
- W2046244358 cites W2160621615 @default.
- W2046244358 cites W2162935331 @default.
- W2046244358 cites W2163493476 @default.
- W2046244358 cites W2165846780 @default.
- W2046244358 cites W2185619721 @default.
- W2046244358 cites W2318990034 @default.
- W2046244358 cites W2320411340 @default.
- W2046244358 cites W2321760020 @default.
- W2046244358 cites W26383832 @default.
- W2046244358 cites W4252345091 @default.
- W2046244358 cites W61051756 @default.
- W2046244358 cites W992860623 @default.
- W2046244358 cites W2035996277 @default.
- W2046244358 doi "https://doi.org/10.1111/j.1438-8677.1994.tb00789.x" @default.
- W2046244358 hasPublicationYear "1994" @default.
- W2046244358 type Work @default.
- W2046244358 sameAs 2046244358 @default.
- W2046244358 citedByCount "84" @default.
- W2046244358 countsByYear W20462443582012 @default.
- W2046244358 countsByYear W20462443582013 @default.
- W2046244358 countsByYear W20462443582014 @default.
- W2046244358 countsByYear W20462443582015 @default.
- W2046244358 countsByYear W20462443582016 @default.
- W2046244358 countsByYear W20462443582019 @default.
- W2046244358 countsByYear W20462443582020 @default.
- W2046244358 countsByYear W20462443582021 @default.
- W2046244358 countsByYear W20462443582022 @default.
- W2046244358 countsByYear W20462443582023 @default.
- W2046244358 crossrefType "journal-article" @default.
- W2046244358 hasAuthorship W2046244358A5001722677 @default.
- W2046244358 hasAuthorship W2046244358A5012939174 @default.
- W2046244358 hasAuthorship W2046244358A5016549912 @default.
- W2046244358 hasAuthorship W2046244358A5050818691 @default.
- W2046244358 hasAuthorship W2046244358A5062841144 @default.
- W2046244358 hasAuthorship W2046244358A5066378935 @default.