Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046308910> ?p ?o ?g. }
- W2046308910 endingPage "5317" @default.
- W2046308910 startingPage "5317" @default.
- W2046308910 abstract "We performed CASSCF and MRCI calculations for determination of the effective pathways of ultrafast radiationless transitions from the optically allowed ππ* 1La state to the ground state S0 of 9H-adenine. The nπ*, πσ*, and two ππ* states were taken into account as states involved in the radiationless process. Optimized geometry and conical intersections were searched in the full dimensional space for the vibrational degrees of freedom by using the suite of quantum chemistry codes MOLPRO. The MRCI transition energies to excited states are in good agreement with the experimental values. The mechanisms of three competing pathways, two indirect pathways via the πσ* and nπ* states, 1La → πσ* → S0 and 1La →nπ* → S0, and a direct pathway 1La→ S0, were examined on the basis of the structures and energies of conical intersections involved in ultrafast radiationless transitions from 1La to S0. Any conical intersection between the πσ* and nπ* states was not found. This suggests that the two indirect pathways are independent of each other. The ππ* 1La–πσ* conical intersection lies higher than the ππ* 1La state at the Franck–Condon geometry by 0.19 eV according to the present MRCI calculation, which is consistent with the experimental observation that a new channel is open at the excess energy of ∼0.2 eV above the band origin of the ππ* 1La state. It is concluded that relaxation from the ππ* 1La–πσ* conical intersection to S0 occurs mainly through the πσ*–S0 conical intersection. The ππ* 1La–nπ* conical intersection lies higher by 0.1 eV (MRCI value) than the ππ* 1La state at the Franck–Condon geometry. The fast decay component in time-resolved spectra of 9H-adenine is attributed to rapid radiationless transitions to the nπ* state via this conical intersection followed by the transition to S0via the nπ*–S0 (or ππ* 1La–S0) conical intersection. The ππ* 1La–S0 conical intersection of large out-of-plane distortion has the lowest energy among the conical intersections found in this study. We identified the transition state between the ππ* 1La at the Franck–Condon geometry and the ππ* 1La–S0 conical intersection. The MRCI energy of the transition state on the 1La potential surface is higher by 0.21 eV than the vertical excitation energy. The possibility of strong coupling between the two close-lying states 1La and nπ* indicates that, besides this direct pathway, radiationless transitions to S0via the ππ* 1La–S0 conical intersection can also occur after rapid relaxations between 1La and nπ*. The analysis of the h-vector for each conical intersection has shown that the active coupling for the πσ* pathway is dominated by the out-of-plane normal mode ν10, while the active coupling for the nπ* pathway is distributed among many normal modes. Control of the branching ratio of the two indirect pathways can be achieved by selective excitation of single vibronic levels involving active coupling modes such as the mode ν10." @default.
- W2046308910 created "2016-06-24" @default.
- W2046308910 creator A5000891227 @default.
- W2046308910 creator A5014017995 @default.
- W2046308910 creator A5039353254 @default.
- W2046308910 creator A5040547033 @default.
- W2046308910 creator A5068243775 @default.
- W2046308910 creator A5082083737 @default.
- W2046308910 date "2010-01-01" @default.
- W2046308910 modified "2023-09-25" @default.
- W2046308910 title "Ultrafast radiationless transition pathways through conical intersections in photo-excited 9H-adenine" @default.
- W2046308910 cites W1504277857 @default.
- W2046308910 cites W1661433359 @default.
- W2046308910 cites W1971088646 @default.
- W2046308910 cites W1973771345 @default.
- W2046308910 cites W1974869771 @default.
- W2046308910 cites W1975153141 @default.
- W2046308910 cites W1978074278 @default.
- W2046308910 cites W1980681821 @default.
- W2046308910 cites W1982414593 @default.
- W2046308910 cites W1985972530 @default.
- W2046308910 cites W1990731666 @default.
- W2046308910 cites W1991752782 @default.
- W2046308910 cites W1994671348 @default.
- W2046308910 cites W1995048030 @default.
- W2046308910 cites W1996537715 @default.
- W2046308910 cites W2000051917 @default.
- W2046308910 cites W2003320348 @default.
- W2046308910 cites W2005345386 @default.
- W2046308910 cites W2006331199 @default.
- W2046308910 cites W2006546439 @default.
- W2046308910 cites W2008916603 @default.
- W2046308910 cites W2012250751 @default.
- W2046308910 cites W2015476020 @default.
- W2046308910 cites W2016048877 @default.
- W2046308910 cites W2016871438 @default.
- W2046308910 cites W2017787052 @default.
- W2046308910 cites W2028310515 @default.
- W2046308910 cites W2031160376 @default.
- W2046308910 cites W2032436962 @default.
- W2046308910 cites W2032677352 @default.
- W2046308910 cites W2033262860 @default.
- W2046308910 cites W2034372282 @default.
- W2046308910 cites W2035278811 @default.
- W2046308910 cites W2035855614 @default.
- W2046308910 cites W2040207297 @default.
- W2046308910 cites W2043074780 @default.
- W2046308910 cites W2045508665 @default.
- W2046308910 cites W2053242843 @default.
- W2046308910 cites W2061485177 @default.
- W2046308910 cites W2061534776 @default.
- W2046308910 cites W2063105668 @default.
- W2046308910 cites W2065182712 @default.
- W2046308910 cites W2066180844 @default.
- W2046308910 cites W2066666266 @default.
- W2046308910 cites W2066821455 @default.
- W2046308910 cites W2070115525 @default.
- W2046308910 cites W2073390226 @default.
- W2046308910 cites W2079384564 @default.
- W2046308910 cites W2080158520 @default.
- W2046308910 cites W2080542138 @default.
- W2046308910 cites W2084498151 @default.
- W2046308910 cites W2088282970 @default.
- W2046308910 cites W2090462071 @default.
- W2046308910 cites W2092950201 @default.
- W2046308910 cites W2097780038 @default.
- W2046308910 cites W2114155310 @default.
- W2046308910 cites W2121966976 @default.
- W2046308910 cites W2134062899 @default.
- W2046308910 cites W2141506516 @default.
- W2046308910 cites W2142592026 @default.
- W2046308910 cites W2142861346 @default.
- W2046308910 cites W2142882197 @default.
- W2046308910 cites W2146234190 @default.
- W2046308910 cites W2147424537 @default.
- W2046308910 cites W2151407266 @default.
- W2046308910 cites W2153850780 @default.
- W2046308910 cites W2155450157 @default.
- W2046308910 cites W2170685633 @default.
- W2046308910 cites W2178006639 @default.
- W2046308910 cites W2621781042 @default.
- W2046308910 doi "https://doi.org/10.1039/b926102h" @default.
- W2046308910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20358092" @default.
- W2046308910 hasPublicationYear "2010" @default.
- W2046308910 type Work @default.
- W2046308910 sameAs 2046308910 @default.
- W2046308910 citedByCount "31" @default.
- W2046308910 countsByYear W20463089102012 @default.
- W2046308910 countsByYear W20463089102013 @default.
- W2046308910 countsByYear W20463089102014 @default.
- W2046308910 countsByYear W20463089102015 @default.
- W2046308910 countsByYear W20463089102016 @default.
- W2046308910 countsByYear W20463089102017 @default.
- W2046308910 countsByYear W20463089102018 @default.
- W2046308910 countsByYear W20463089102019 @default.
- W2046308910 countsByYear W20463089102021 @default.
- W2046308910 countsByYear W20463089102022 @default.
- W2046308910 crossrefType "journal-article" @default.