Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046357557> ?p ?o ?g. }
- W2046357557 endingPage "87" @default.
- W2046357557 startingPage "69" @default.
- W2046357557 abstract "New techniques for the analysis of stochastic volatility models in which the logarithm of conditional variance follows an autoregressive model are developed. A cyclic Metropolis algorithm is used to construct a Markov-chain simulation tool. Simulations from this Markov chain coverage in distribution to draws from the posterior distribution enabling exact finite-sample inference. The exact solution to the filtering/smoothing problem of inferring about the unobserved variance states is a by-product of our Markov-chain method. In addition, multistep-ahead predictive densities can be constructed that reflect both inherent model variability and parameter uncertainty. We illustrate our method by analyzing both daily and weekly data on stock returns and exchange rates. Sampling experiments are conducted to compare the performance of Bayes estimators to method of moments and quasi-maximum likelihood estimators proposed in the literature. In both parameter estimation and filtering, the Bayes estimators outperform these other approaches." @default.
- W2046357557 created "2016-06-24" @default.
- W2046357557 creator A5047862920 @default.
- W2046357557 creator A5080734185 @default.
- W2046357557 creator A5086643947 @default.
- W2046357557 date "2002-01-01" @default.
- W2046357557 modified "2023-10-16" @default.
- W2046357557 title "Bayesian Analysis of Stochastic Volatility Models" @default.
- W2046357557 cites W1490503310 @default.
- W2046357557 cites W1576326745 @default.
- W2046357557 cites W1599921484 @default.
- W2046357557 cites W1977569390 @default.
- W2046357557 cites W1985500221 @default.
- W2046357557 cites W1994177366 @default.
- W2046357557 cites W1997245915 @default.
- W2046357557 cites W1999814123 @default.
- W2046357557 cites W1999996900 @default.
- W2046357557 cites W2017297397 @default.
- W2046357557 cites W2020999234 @default.
- W2046357557 cites W2028995298 @default.
- W2046357557 cites W2054599015 @default.
- W2046357557 cites W2063009186 @default.
- W2046357557 cites W2083875149 @default.
- W2046357557 cites W2108446661 @default.
- W2046357557 cites W2110752212 @default.
- W2046357557 cites W2117999380 @default.
- W2046357557 cites W2139080644 @default.
- W2046357557 cites W2148080284 @default.
- W2046357557 cites W2152977846 @default.
- W2046357557 cites W2153155589 @default.
- W2046357557 cites W2157403008 @default.
- W2046357557 cites W2160607725 @default.
- W2046357557 cites W2164168189 @default.
- W2046357557 cites W2169246290 @default.
- W2046357557 cites W2293807537 @default.
- W2046357557 cites W2615953416 @default.
- W2046357557 cites W2797652052 @default.
- W2046357557 cites W3122150532 @default.
- W2046357557 cites W3122204645 @default.
- W2046357557 cites W3122858766 @default.
- W2046357557 cites W3123449835 @default.
- W2046357557 cites W3204157529 @default.
- W2046357557 doi "https://doi.org/10.1198/073500102753410408" @default.
- W2046357557 hasPublicationYear "2002" @default.
- W2046357557 type Work @default.
- W2046357557 sameAs 2046357557 @default.
- W2046357557 citedByCount "644" @default.
- W2046357557 countsByYear W20463575572012 @default.
- W2046357557 countsByYear W20463575572013 @default.
- W2046357557 countsByYear W20463575572014 @default.
- W2046357557 countsByYear W20463575572015 @default.
- W2046357557 countsByYear W20463575572016 @default.
- W2046357557 countsByYear W20463575572017 @default.
- W2046357557 countsByYear W20463575572018 @default.
- W2046357557 countsByYear W20463575572019 @default.
- W2046357557 countsByYear W20463575572020 @default.
- W2046357557 countsByYear W20463575572021 @default.
- W2046357557 countsByYear W20463575572022 @default.
- W2046357557 countsByYear W20463575572023 @default.
- W2046357557 crossrefType "journal-article" @default.
- W2046357557 hasAuthorship W2046357557A5047862920 @default.
- W2046357557 hasAuthorship W2046357557A5080734185 @default.
- W2046357557 hasAuthorship W2046357557A5086643947 @default.
- W2046357557 hasConcept C105795698 @default.
- W2046357557 hasConcept C107673813 @default.
- W2046357557 hasConcept C111350023 @default.
- W2046357557 hasConcept C142291917 @default.
- W2046357557 hasConcept C149782125 @default.
- W2046357557 hasConcept C159877910 @default.
- W2046357557 hasConcept C185429906 @default.
- W2046357557 hasConcept C207201462 @default.
- W2046357557 hasConcept C33923547 @default.
- W2046357557 hasConcept C41008148 @default.
- W2046357557 hasConcept C85393063 @default.
- W2046357557 hasConcept C91602232 @default.
- W2046357557 hasConcept C98763669 @default.
- W2046357557 hasConceptScore W2046357557C105795698 @default.
- W2046357557 hasConceptScore W2046357557C107673813 @default.
- W2046357557 hasConceptScore W2046357557C111350023 @default.
- W2046357557 hasConceptScore W2046357557C142291917 @default.
- W2046357557 hasConceptScore W2046357557C149782125 @default.
- W2046357557 hasConceptScore W2046357557C159877910 @default.
- W2046357557 hasConceptScore W2046357557C185429906 @default.
- W2046357557 hasConceptScore W2046357557C207201462 @default.
- W2046357557 hasConceptScore W2046357557C33923547 @default.
- W2046357557 hasConceptScore W2046357557C41008148 @default.
- W2046357557 hasConceptScore W2046357557C85393063 @default.
- W2046357557 hasConceptScore W2046357557C91602232 @default.
- W2046357557 hasConceptScore W2046357557C98763669 @default.
- W2046357557 hasIssue "1" @default.
- W2046357557 hasLocation W20463575571 @default.
- W2046357557 hasOpenAccess W2046357557 @default.
- W2046357557 hasPrimaryLocation W20463575571 @default.
- W2046357557 hasRelatedWork W2083677154 @default.
- W2046357557 hasRelatedWork W2089519699 @default.
- W2046357557 hasRelatedWork W2188650561 @default.
- W2046357557 hasRelatedWork W2371057259 @default.
- W2046357557 hasRelatedWork W2825391699 @default.