Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046376969> ?p ?o ?g. }
- W2046376969 endingPage "323" @default.
- W2046376969 startingPage "301" @default.
- W2046376969 abstract "Gauss–Hermite quadrature is often used to evaluate and maximize the likelihood for random component probit models. Unfortunately, the estimates are biased for large cluster sizes and/or intraclass correlations. We show that adaptive quadrature largely overcomes these problems. We then extend the adaptive quadrature approach to general random coefficient models with limited and discrete dependent variables. The models can include several nested random effects (intercepts and coefficients) representing unobserved heterogeneity at different levels of a hierarchical dataset. The required multivariate integrals are evaluated efficiently using spherical quadrature rules. Simulations show that adaptive quadrature performs well in a wide range of situations." @default.
- W2046376969 created "2016-06-24" @default.
- W2046376969 creator A5033846900 @default.
- W2046376969 creator A5048660804 @default.
- W2046376969 creator A5091134711 @default.
- W2046376969 date "2005-10-01" @default.
- W2046376969 modified "2023-10-14" @default.
- W2046376969 title "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects" @default.
- W2046376969 cites W1566899673 @default.
- W2046376969 cites W1980274797 @default.
- W2046376969 cites W1981406540 @default.
- W2046376969 cites W1988644013 @default.
- W2046376969 cites W1998127317 @default.
- W2046376969 cites W2004877180 @default.
- W2046376969 cites W2013515152 @default.
- W2046376969 cites W2015536561 @default.
- W2046376969 cites W2017177731 @default.
- W2046376969 cites W2017966270 @default.
- W2046376969 cites W2029974256 @default.
- W2046376969 cites W2042254170 @default.
- W2046376969 cites W2043566317 @default.
- W2046376969 cites W2044014796 @default.
- W2046376969 cites W2051205653 @default.
- W2046376969 cites W2060793194 @default.
- W2046376969 cites W2065525246 @default.
- W2046376969 cites W2069496376 @default.
- W2046376969 cites W2072983788 @default.
- W2046376969 cites W2074416441 @default.
- W2046376969 cites W2076362839 @default.
- W2046376969 cites W2076643444 @default.
- W2046376969 cites W2077821776 @default.
- W2046376969 cites W2080602681 @default.
- W2046376969 cites W2080752093 @default.
- W2046376969 cites W2089957530 @default.
- W2046376969 cites W2095342230 @default.
- W2046376969 cites W2102236934 @default.
- W2046376969 cites W2127682847 @default.
- W2046376969 cites W2128860785 @default.
- W2046376969 cites W2129704733 @default.
- W2046376969 cites W2163989000 @default.
- W2046376969 cites W2167200717 @default.
- W2046376969 cites W2800420890 @default.
- W2046376969 cites W3023701642 @default.
- W2046376969 cites W3125631674 @default.
- W2046376969 cites W4235256018 @default.
- W2046376969 cites W4240449949 @default.
- W2046376969 cites W4242409487 @default.
- W2046376969 cites W4244611409 @default.
- W2046376969 cites W4245666426 @default.
- W2046376969 cites W4249303585 @default.
- W2046376969 cites W4302853952 @default.
- W2046376969 doi "https://doi.org/10.1016/j.jeconom.2004.08.017" @default.
- W2046376969 hasPublicationYear "2005" @default.
- W2046376969 type Work @default.
- W2046376969 sameAs 2046376969 @default.
- W2046376969 citedByCount "625" @default.
- W2046376969 countsByYear W20463769692012 @default.
- W2046376969 countsByYear W20463769692013 @default.
- W2046376969 countsByYear W20463769692014 @default.
- W2046376969 countsByYear W20463769692015 @default.
- W2046376969 countsByYear W20463769692016 @default.
- W2046376969 countsByYear W20463769692017 @default.
- W2046376969 countsByYear W20463769692018 @default.
- W2046376969 countsByYear W20463769692019 @default.
- W2046376969 countsByYear W20463769692020 @default.
- W2046376969 countsByYear W20463769692021 @default.
- W2046376969 countsByYear W20463769692022 @default.
- W2046376969 countsByYear W20463769692023 @default.
- W2046376969 crossrefType "journal-article" @default.
- W2046376969 hasAuthorship W2046376969A5033846900 @default.
- W2046376969 hasAuthorship W2046376969A5048660804 @default.
- W2046376969 hasAuthorship W2046376969A5091134711 @default.
- W2046376969 hasBestOaLocation W20463769692 @default.
- W2046376969 hasConcept C105795698 @default.
- W2046376969 hasConcept C119599485 @default.
- W2046376969 hasConcept C126255220 @default.
- W2046376969 hasConcept C127413603 @default.
- W2046376969 hasConcept C134306372 @default.
- W2046376969 hasConcept C154945302 @default.
- W2046376969 hasConcept C167196314 @default.
- W2046376969 hasConcept C167590341 @default.
- W2046376969 hasConcept C184599523 @default.
- W2046376969 hasConcept C27016315 @default.
- W2046376969 hasConcept C2775924081 @default.
- W2046376969 hasConcept C28826006 @default.
- W2046376969 hasConcept C33923547 @default.
- W2046376969 hasConcept C41008148 @default.
- W2046376969 hasConcept C47446073 @default.
- W2046376969 hasConcept C48265008 @default.
- W2046376969 hasConcept C62869609 @default.
- W2046376969 hasConceptScore W2046376969C105795698 @default.
- W2046376969 hasConceptScore W2046376969C119599485 @default.
- W2046376969 hasConceptScore W2046376969C126255220 @default.
- W2046376969 hasConceptScore W2046376969C127413603 @default.
- W2046376969 hasConceptScore W2046376969C134306372 @default.
- W2046376969 hasConceptScore W2046376969C154945302 @default.
- W2046376969 hasConceptScore W2046376969C167196314 @default.
- W2046376969 hasConceptScore W2046376969C167590341 @default.