Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046403398> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2046403398 abstract "Entities (e.g., person, movie or place) play an important role in real-world applications and learning entity types has attracted much attention in recent years. Most conventional automatic techniques use large corpora, such as news articles, to learn types of entities. However, such text corpora focus on general knowledge about entities in an objective way. Hence, it is difficult to satisfy those users with specific and personalized needs for an entity. Recent years have witnessed an explosive expansion in the mining of search query logs, which contain billions of entities. The word patterns and click-throughs in search logs are not found in text corpora, thus providing a complemental source for discovering entity types based on user behaviors. In this paper, we study the problem of learning entity types from search query logs and address the following challenges: (1) queries are short texts, and information related to entities is usually very sparse; (2) large amounts of irrelevant information exists in search logs, bringing noise in detecting entity types. In this paper, we first model query logs using a bipartite graph with entities and their auxiliary information, such as contextual words and clicked URLs. Then we propose a graph-based framework called ELP (Ensemble framework based on Lable Propagation) to simultaneously learn the types of both entities and auxiliary signals. In ELP, two separate strategies are designed to fix the problems of sparsity and noise in query logs. Extensive empirical studies are conducted on real search logs to evaluate the effectiveness of the proposed ELP framework." @default.
- W2046403398 created "2016-06-24" @default.
- W2046403398 creator A5019735991 @default.
- W2046403398 creator A5024785349 @default.
- W2046403398 creator A5028701003 @default.
- W2046403398 creator A5029392006 @default.
- W2046403398 creator A5036357902 @default.
- W2046403398 creator A5069037452 @default.
- W2046403398 date "2015-10-17" @default.
- W2046403398 modified "2023-09-25" @default.
- W2046403398 title "Learning Entity Types from Query Logs via Graph-Based Modeling" @default.
- W2046403398 cites W1987514826 @default.
- W2046403398 cites W1988157164 @default.
- W2046403398 cites W1997189720 @default.
- W2046403398 cites W2013929512 @default.
- W2046403398 cites W2018075017 @default.
- W2046403398 cites W2047197963 @default.
- W2046403398 cites W2052530028 @default.
- W2046403398 cites W2062797058 @default.
- W2046403398 cites W2067158812 @default.
- W2046403398 cites W2085600761 @default.
- W2046403398 cites W2086378526 @default.
- W2046403398 cites W2091208042 @default.
- W2046403398 cites W2091950909 @default.
- W2046403398 cites W2111869785 @default.
- W2046403398 cites W2112497803 @default.
- W2046403398 cites W2128878106 @default.
- W2046403398 cites W2150284260 @default.
- W2046403398 cites W2153267064 @default.
- W2046403398 cites W2163375626 @default.
- W2046403398 cites W2167181946 @default.
- W2046403398 doi "https://doi.org/10.1145/2806416.2806498" @default.
- W2046403398 hasPublicationYear "2015" @default.
- W2046403398 type Work @default.
- W2046403398 sameAs 2046403398 @default.
- W2046403398 citedByCount "9" @default.
- W2046403398 countsByYear W20464033982015 @default.
- W2046403398 countsByYear W20464033982016 @default.
- W2046403398 countsByYear W20464033982017 @default.
- W2046403398 countsByYear W20464033982018 @default.
- W2046403398 countsByYear W20464033982021 @default.
- W2046403398 countsByYear W20464033982023 @default.
- W2046403398 crossrefType "proceedings-article" @default.
- W2046403398 hasAuthorship W2046403398A5019735991 @default.
- W2046403398 hasAuthorship W2046403398A5024785349 @default.
- W2046403398 hasAuthorship W2046403398A5028701003 @default.
- W2046403398 hasAuthorship W2046403398A5029392006 @default.
- W2046403398 hasAuthorship W2046403398A5036357902 @default.
- W2046403398 hasAuthorship W2046403398A5069037452 @default.
- W2046403398 hasConcept C132525143 @default.
- W2046403398 hasConcept C154945302 @default.
- W2046403398 hasConcept C157692150 @default.
- W2046403398 hasConcept C204321447 @default.
- W2046403398 hasConcept C23123220 @default.
- W2046403398 hasConcept C41008148 @default.
- W2046403398 hasConcept C80444323 @default.
- W2046403398 hasConceptScore W2046403398C132525143 @default.
- W2046403398 hasConceptScore W2046403398C154945302 @default.
- W2046403398 hasConceptScore W2046403398C157692150 @default.
- W2046403398 hasConceptScore W2046403398C204321447 @default.
- W2046403398 hasConceptScore W2046403398C23123220 @default.
- W2046403398 hasConceptScore W2046403398C41008148 @default.
- W2046403398 hasConceptScore W2046403398C80444323 @default.
- W2046403398 hasLocation W20464033981 @default.
- W2046403398 hasOpenAccess W2046403398 @default.
- W2046403398 hasPrimaryLocation W20464033981 @default.
- W2046403398 hasRelatedWork W1601704076 @default.
- W2046403398 hasRelatedWork W1800025980 @default.
- W2046403398 hasRelatedWork W2064933157 @default.
- W2046403398 hasRelatedWork W2088472058 @default.
- W2046403398 hasRelatedWork W2161902337 @default.
- W2046403398 hasRelatedWork W2350026801 @default.
- W2046403398 hasRelatedWork W2363027842 @default.
- W2046403398 hasRelatedWork W2372938158 @default.
- W2046403398 hasRelatedWork W4220868064 @default.
- W2046403398 hasRelatedWork W2098306546 @default.
- W2046403398 isParatext "false" @default.
- W2046403398 isRetracted "false" @default.
- W2046403398 magId "2046403398" @default.
- W2046403398 workType "article" @default.