Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046417353> ?p ?o ?g. }
- W2046417353 endingPage "137" @default.
- W2046417353 startingPage "123" @default.
- W2046417353 abstract "Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral inner membrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.The work presented here describes the first prokaryotic proteome-wide subcellular localization (SCL) dataset for the emerging pathogen B. henselae (Bhen). The study indicates that suitable subcellular fractionation experiments combined with straight-forward computational analysis approaches assessing the proportion of spectral counts observed in different subcellular fractions are powerful for determining the predominant SCL of a large percentage of the experimentally observed proteins. This includes numerous cases where in silico prediction methods do not provide any prediction. Avoiding a treatment with harsh conditions, cytoplasmic proteins tend to co-fractionate with proteins of the inner membrane fraction, indicative of close functional interactions. The spectral count proportion (SCP) of total membrane versus cytoplasmic fractions allowed us to obtain a good indication about the relative proximity of individual protein complex members to the inner membrane. Using principal component analysis and k-nearest neighbor approaches, we were able to extend the percentage of proteins with a predominant experimental localization to over 90% of all expressed proteins and identified a set of at least 74 outer membrane (OM) proteins. In general, OM proteins represent a rich source of candidates for the development of urgently needed new therapeutics in combat of resurgence of infectious disease and multi-drug resistant bacteria. Finally, by comparing the data from two infection biology relevant conditions, we conceptually explore methods to identify and visualize potential candidates that may partially change their SCL in these different conditions. The data are made available to researchers as a SCL compendium for Bhen and as an assistance in further improving in silico SCL prediction algorithms." @default.
- W2046417353 created "2016-06-24" @default.
- W2046417353 creator A5003790381 @default.
- W2046417353 creator A5018962844 @default.
- W2046417353 creator A5055579001 @default.
- W2046417353 creator A5085494082 @default.
- W2046417353 creator A5087061054 @default.
- W2046417353 date "2014-03-01" @default.
- W2046417353 modified "2023-10-01" @default.
- W2046417353 title "Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism" @default.
- W2046417353 cites W1548038775 @default.
- W2046417353 cites W1598166759 @default.
- W2046417353 cites W1943943023 @default.
- W2046417353 cites W1970010460 @default.
- W2046417353 cites W1980092520 @default.
- W2046417353 cites W1981924974 @default.
- W2046417353 cites W1983767314 @default.
- W2046417353 cites W1990710729 @default.
- W2046417353 cites W1991608395 @default.
- W2046417353 cites W1992851320 @default.
- W2046417353 cites W2003448359 @default.
- W2046417353 cites W2006246187 @default.
- W2046417353 cites W2007520071 @default.
- W2046417353 cites W2019338290 @default.
- W2046417353 cites W2025265211 @default.
- W2046417353 cites W2028899902 @default.
- W2046417353 cites W2030353309 @default.
- W2046417353 cites W2036974074 @default.
- W2046417353 cites W2042133316 @default.
- W2046417353 cites W2052512286 @default.
- W2046417353 cites W2053552108 @default.
- W2046417353 cites W2058658881 @default.
- W2046417353 cites W2064105069 @default.
- W2046417353 cites W2065795346 @default.
- W2046417353 cites W2069993081 @default.
- W2046417353 cites W2078738962 @default.
- W2046417353 cites W2083309296 @default.
- W2046417353 cites W2084809943 @default.
- W2046417353 cites W2090974720 @default.
- W2046417353 cites W2101117598 @default.
- W2046417353 cites W2102783819 @default.
- W2046417353 cites W2106074866 @default.
- W2046417353 cites W2107247090 @default.
- W2046417353 cites W2107629783 @default.
- W2046417353 cites W2111941744 @default.
- W2046417353 cites W2116405747 @default.
- W2046417353 cites W2117414599 @default.
- W2046417353 cites W2119027673 @default.
- W2046417353 cites W2120671490 @default.
- W2046417353 cites W2121869529 @default.
- W2046417353 cites W2123827367 @default.
- W2046417353 cites W2128009182 @default.
- W2046417353 cites W2128265724 @default.
- W2046417353 cites W2130991959 @default.
- W2046417353 cites W2131315375 @default.
- W2046417353 cites W2131778683 @default.
- W2046417353 cites W2133172947 @default.
- W2046417353 cites W2134637395 @default.
- W2046417353 cites W2135097960 @default.
- W2046417353 cites W2135398184 @default.
- W2046417353 cites W2137335580 @default.
- W2046417353 cites W2141899085 @default.
- W2046417353 cites W2144626747 @default.
- W2046417353 cites W2148692463 @default.
- W2046417353 cites W2151790371 @default.
- W2046417353 cites W2152923355 @default.
- W2046417353 cites W2154202919 @default.
- W2046417353 cites W2159165131 @default.
- W2046417353 cites W2162792752 @default.
- W2046417353 cites W2164620224 @default.
- W2046417353 cites W2166918878 @default.
- W2046417353 cites W2167788216 @default.
- W2046417353 cites W2169805130 @default.
- W2046417353 cites W2331502443 @default.
- W2046417353 doi "https://doi.org/10.1016/j.jprot.2014.01.015" @default.
- W2046417353 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24486812" @default.
- W2046417353 hasPublicationYear "2014" @default.
- W2046417353 type Work @default.
- W2046417353 sameAs 2046417353 @default.
- W2046417353 citedByCount "31" @default.
- W2046417353 countsByYear W20464173532014 @default.
- W2046417353 countsByYear W20464173532015 @default.
- W2046417353 countsByYear W20464173532016 @default.
- W2046417353 countsByYear W20464173532017 @default.
- W2046417353 countsByYear W20464173532018 @default.
- W2046417353 countsByYear W20464173532019 @default.
- W2046417353 countsByYear W20464173532020 @default.
- W2046417353 countsByYear W20464173532021 @default.
- W2046417353 countsByYear W20464173532022 @default.
- W2046417353 countsByYear W20464173532023 @default.
- W2046417353 crossrefType "journal-article" @default.
- W2046417353 hasAuthorship W2046417353A5003790381 @default.
- W2046417353 hasAuthorship W2046417353A5018962844 @default.
- W2046417353 hasAuthorship W2046417353A5055579001 @default.
- W2046417353 hasAuthorship W2046417353A5085494082 @default.
- W2046417353 hasAuthorship W2046417353A5087061054 @default.
- W2046417353 hasConcept C104317684 @default.
- W2046417353 hasConcept C104397665 @default.