Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046440087> ?p ?o ?g. }
- W2046440087 endingPage "100" @default.
- W2046440087 startingPage "93" @default.
- W2046440087 abstract "Understanding liquid water's behavior at the molecular level is essential to progress in fields as disparate as biology and atmospheric sciences. Moreover, the properties of water in bulk and water at interfaces can be very different, making the study of the hydrogen-bonding networks therein very important. With recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, it is now possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider here three aqueous interfaces: the water liquid-vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface. In the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy (such as FTIR, pump-probe, two-dimensional IR, and the like) can be used to probe the interfacial water. In this Account, we discuss our attempts to model these three systems and interpret the existing experiments. For the water liquid-vapor interface, we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and canceling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H(2)O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and we implement the model to calculate isotropic and anisotropic pump-probe decays. We then compare these results with experimental data. Clearly, recent experimental advances in vibrational spectroscopy have led to beautiful new results, providing information about the structure and dynamics of water at interfaces. These experimental and concomitant theoretical advances (particularly the unified theoretical framework of non-linear response functions) have greatly contributed to our understanding of this unique and important substance." @default.
- W2046440087 created "2016-06-24" @default.
- W2046440087 creator A5009000079 @default.
- W2046440087 creator A5049195465 @default.
- W2046440087 creator A5074566219 @default.
- W2046440087 date "2011-10-27" @default.
- W2046440087 modified "2023-10-16" @default.
- W2046440087 title "Vibrational Spectroscopy of Water at Interfaces" @default.
- W2046440087 cites W1594337887 @default.
- W2046440087 cites W1972956206 @default.
- W2046440087 cites W1974197525 @default.
- W2046440087 cites W1975198730 @default.
- W2046440087 cites W1976499671 @default.
- W2046440087 cites W1982219464 @default.
- W2046440087 cites W1982385940 @default.
- W2046440087 cites W1990491972 @default.
- W2046440087 cites W1992254841 @default.
- W2046440087 cites W1994888939 @default.
- W2046440087 cites W1996793357 @default.
- W2046440087 cites W2000456051 @default.
- W2046440087 cites W2000827899 @default.
- W2046440087 cites W2001021305 @default.
- W2046440087 cites W2002589395 @default.
- W2046440087 cites W2010104737 @default.
- W2046440087 cites W2012325954 @default.
- W2046440087 cites W2013107255 @default.
- W2046440087 cites W2017297771 @default.
- W2046440087 cites W2017401947 @default.
- W2046440087 cites W2019533832 @default.
- W2046440087 cites W2021246523 @default.
- W2046440087 cites W2022634066 @default.
- W2046440087 cites W2022883821 @default.
- W2046440087 cites W2026745806 @default.
- W2046440087 cites W2027572036 @default.
- W2046440087 cites W2029190682 @default.
- W2046440087 cites W2030361100 @default.
- W2046440087 cites W2035978779 @default.
- W2046440087 cites W2040371272 @default.
- W2046440087 cites W2040671601 @default.
- W2046440087 cites W2042337519 @default.
- W2046440087 cites W2044109601 @default.
- W2046440087 cites W2044637063 @default.
- W2046440087 cites W2049475242 @default.
- W2046440087 cites W2050112717 @default.
- W2046440087 cites W2058055035 @default.
- W2046440087 cites W2060258956 @default.
- W2046440087 cites W2060499505 @default.
- W2046440087 cites W2068029782 @default.
- W2046440087 cites W2068304618 @default.
- W2046440087 cites W2069672553 @default.
- W2046440087 cites W2071840779 @default.
- W2046440087 cites W2083887156 @default.
- W2046440087 cites W2091230747 @default.
- W2046440087 cites W2107152471 @default.
- W2046440087 cites W2116880413 @default.
- W2046440087 cites W2121517777 @default.
- W2046440087 cites W2123526681 @default.
- W2046440087 cites W2134464060 @default.
- W2046440087 cites W2138581368 @default.
- W2046440087 cites W2314812999 @default.
- W2046440087 doi "https://doi.org/10.1021/ar200122a" @default.
- W2046440087 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3260406" @default.
- W2046440087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22032305" @default.
- W2046440087 hasPublicationYear "2011" @default.
- W2046440087 type Work @default.
- W2046440087 sameAs 2046440087 @default.
- W2046440087 citedByCount "122" @default.
- W2046440087 countsByYear W20464400872012 @default.
- W2046440087 countsByYear W20464400872013 @default.
- W2046440087 countsByYear W20464400872014 @default.
- W2046440087 countsByYear W20464400872015 @default.
- W2046440087 countsByYear W20464400872016 @default.
- W2046440087 countsByYear W20464400872017 @default.
- W2046440087 countsByYear W20464400872018 @default.
- W2046440087 countsByYear W20464400872019 @default.
- W2046440087 countsByYear W20464400872020 @default.
- W2046440087 countsByYear W20464400872021 @default.
- W2046440087 countsByYear W20464400872022 @default.
- W2046440087 countsByYear W20464400872023 @default.
- W2046440087 crossrefType "journal-article" @default.
- W2046440087 hasAuthorship W2046440087A5009000079 @default.
- W2046440087 hasAuthorship W2046440087A5049195465 @default.
- W2046440087 hasAuthorship W2046440087A5074566219 @default.
- W2046440087 hasBestOaLocation W20464400872 @default.
- W2046440087 hasConcept C11268172 @default.
- W2046440087 hasConcept C112887158 @default.
- W2046440087 hasConcept C113843644 @default.
- W2046440087 hasConcept C119049451 @default.
- W2046440087 hasConcept C120665830 @default.
- W2046440087 hasConcept C121332964 @default.
- W2046440087 hasConcept C147534773 @default.
- W2046440087 hasConcept C147597530 @default.
- W2046440087 hasConcept C147789679 @default.
- W2046440087 hasConcept C153642686 @default.
- W2046440087 hasConcept C159467904 @default.
- W2046440087 hasConcept C160018778 @default.
- W2046440087 hasConcept C160892712 @default.
- W2046440087 hasConcept C178790620 @default.