Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046449485> ?p ?o ?g. }
- W2046449485 endingPage "1568" @default.
- W2046449485 startingPage "1548" @default.
- W2046449485 abstract "In this paper we present a coherent physical picture of the metal-nonmetal transition in metal-ammonia solutions in the intermediate concentration range. We propose that in Li-N${mathrm{H}}_{3}$ and Na-N${mathrm{H}}_{3}$ solutions the metallic propagation regime is separated from a nonmetallic regime by a microscopically inhomogeneous regime in which the concentration fluctuates locally about either of two well-defined values ${M}_{0}$ and ${M}_{1}$, ${M}_{0}>{M}_{1}$, the local concentration remaining near ${M}_{0}$ or ${M}_{1}$ over radii approximately equal to the Debye short correlation length $b$ for concentration fluctuations. Provided that the concentration-fluctuation decay length is much smaller than $b$, we can define a percolation problem in which a volume fraction $C$ of the material is occupied by metallic regions of concentration ${M}_{0}$, the remainder containing the low concentration ${M}_{1}$ of dissociated electron-cation complexes. ${M}_{0}$ and ${M}_{1}$ constitute the upper and the lower bounds of the inhomogeneous regime, respectively, while $C$ exhibits a linear dependence on $M$. This physical picture is borne out by concentration-fluctuation determinations based on chemical-potential measurements in Li and Na solutions and by small-angle x-ray and neutron scattering in Li solutions. Assuming that the phase-coherence length of the conduction electrons is shorter than $b$ and having demonstrated that tunneling corrections are negligible, we can define local electronic structure and transport properties. The limits of the inhomogeneous regime were determined from a combination of concentration-fluctuation measurements, electrical conductivity, Hall effect, and paramagnetic susceptibility data to be ${M}_{0}=9$ mole percent metal (MPM) and ${M}_{1}=2(frac{1}{3})$ MPM, which yield the $C$ scale, $C=frac{[Mensuremath{-}2(frac{1}{3})]}{6(frac{2}{3})}$, for both Li-N${mathrm{H}}_{3}$ at 223ifmmode^circelsetextdegreefi{}K and for Na-N${mathrm{H}}_{3}$ at 240ifmmode^circelsetextdegreefi{}K. We have also established the consistency of our picture with the available magnetic data for Na solutions. An analysis of the electronic and the thermal transport properties was carried out in terms of an effective-medium theory, modified to account for scattering from the boundaries of the metallic clusters. For low values of the conductivity ratio (ensuremath{sim} ${10}^{ensuremath{-}3}$) between the nonmetallic and the metallic regions the modified effective-medium theory is valid for $C>0.4$. In an attempt to mimic the features of continuous percolation, we have carried out numerical simulations of the conductivity in a simple cubic lattice incorporating correlation between metallic bonds. An excellent fit of the experimental conductivity data for Li and Na with the results of the numerical simulations has been obtained over a three order of magnitude variation of the conductivity throughout the entire inhomogeneous regime. A small systematic negative deviation of the conductivity from the predictions of the effective-medium theory for $C>0.4$ can be properly accounted for in terms of boundary scattering corrections resulting in $bensuremath{simeq}15$ AA{} for Li at 223ifmmode^circelsetextdegreefi{}K and $bensuremath{simeq}32$ AA{} for Na at 240ifmmode^circelsetextdegreefi{}K. The overall agreement of the experimental Hall effect, Hall mobility, thermalconductivity, and thermoelectric-power data with the effective-medium theory is good. The proposed inhomogeneous regime in Li and Na solutions resembles a macroscopic mixed phase at a concentration inside a coexistence curve but with mixing on a microscopic scale. The concentration fluctuations in the inhomogeneous state have nothing to do with critical fluctuations; nevertheless, this state seems to be closely associated with the occurrence of a phase separation." @default.
- W2046449485 created "2016-06-24" @default.
- W2046449485 creator A5018959929 @default.
- W2046449485 creator A5067055578 @default.
- W2046449485 date "1976-02-15" @default.
- W2046449485 modified "2023-10-17" @default.
- W2046449485 title "Metal-nonmetal transition in metal-ammonia solutions" @default.
- W2046449485 cites W1837863733 @default.
- W2046449485 cites W1970136394 @default.
- W2046449485 cites W1972620797 @default.
- W2046449485 cites W1972707077 @default.
- W2046449485 cites W1974432756 @default.
- W2046449485 cites W1974772439 @default.
- W2046449485 cites W1980596660 @default.
- W2046449485 cites W1981634240 @default.
- W2046449485 cites W1982533139 @default.
- W2046449485 cites W1985261292 @default.
- W2046449485 cites W1989358146 @default.
- W2046449485 cites W1990230050 @default.
- W2046449485 cites W1991316552 @default.
- W2046449485 cites W1996613237 @default.
- W2046449485 cites W1999928131 @default.
- W2046449485 cites W2000984737 @default.
- W2046449485 cites W2009624405 @default.
- W2046449485 cites W2013846617 @default.
- W2046449485 cites W2014115661 @default.
- W2046449485 cites W2014647716 @default.
- W2046449485 cites W2015236035 @default.
- W2046449485 cites W2016009468 @default.
- W2046449485 cites W2016639916 @default.
- W2046449485 cites W2017032401 @default.
- W2046449485 cites W2017296691 @default.
- W2046449485 cites W2017690928 @default.
- W2046449485 cites W2019500332 @default.
- W2046449485 cites W2020233211 @default.
- W2046449485 cites W2021107287 @default.
- W2046449485 cites W2023682703 @default.
- W2046449485 cites W2025065308 @default.
- W2046449485 cites W2026690489 @default.
- W2046449485 cites W2029183317 @default.
- W2046449485 cites W2035085251 @default.
- W2046449485 cites W2035094311 @default.
- W2046449485 cites W2036765263 @default.
- W2046449485 cites W2039077327 @default.
- W2046449485 cites W2040774056 @default.
- W2046449485 cites W2043884839 @default.
- W2046449485 cites W2044071751 @default.
- W2046449485 cites W2048350705 @default.
- W2046449485 cites W2049263320 @default.
- W2046449485 cites W2050735151 @default.
- W2046449485 cites W2054448747 @default.
- W2046449485 cites W2054755451 @default.
- W2046449485 cites W2057731094 @default.
- W2046449485 cites W2062546919 @default.
- W2046449485 cites W2070881836 @default.
- W2046449485 cites W2072714873 @default.
- W2046449485 cites W2073354474 @default.
- W2046449485 cites W2076661740 @default.
- W2046449485 cites W2077133304 @default.
- W2046449485 cites W2079128750 @default.
- W2046449485 cites W2080244846 @default.
- W2046449485 cites W2088414071 @default.
- W2046449485 cites W2089172393 @default.
- W2046449485 cites W2089754851 @default.
- W2046449485 cites W2093346176 @default.
- W2046449485 cites W2100524207 @default.
- W2046449485 cites W2146061884 @default.
- W2046449485 cites W2171233371 @default.
- W2046449485 cites W2224173473 @default.
- W2046449485 cites W2314086791 @default.
- W2046449485 cites W2315436109 @default.
- W2046449485 cites W2319498985 @default.
- W2046449485 cites W2325668649 @default.
- W2046449485 cites W2326878643 @default.
- W2046449485 cites W4211254207 @default.
- W2046449485 cites W4240431175 @default.
- W2046449485 cites W4242535759 @default.
- W2046449485 cites W4247406444 @default.
- W2046449485 doi "https://doi.org/10.1103/physrevb.13.1548" @default.
- W2046449485 hasPublicationYear "1976" @default.
- W2046449485 type Work @default.
- W2046449485 sameAs 2046449485 @default.
- W2046449485 citedByCount "53" @default.
- W2046449485 countsByYear W20464494852012 @default.
- W2046449485 countsByYear W20464494852013 @default.
- W2046449485 countsByYear W20464494852014 @default.
- W2046449485 countsByYear W20464494852020 @default.
- W2046449485 countsByYear W20464494852021 @default.
- W2046449485 countsByYear W20464494852022 @default.
- W2046449485 countsByYear W20464494852023 @default.
- W2046449485 crossrefType "journal-article" @default.
- W2046449485 hasAuthorship W2046449485A5018959929 @default.
- W2046449485 hasAuthorship W2046449485A5067055578 @default.
- W2046449485 hasConcept C113196181 @default.
- W2046449485 hasConcept C120398109 @default.
- W2046449485 hasConcept C120665830 @default.
- W2046449485 hasConcept C121332964 @default.
- W2046449485 hasConcept C131540310 @default.