Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046462178> ?p ?o ?g. }
- W2046462178 endingPage "73" @default.
- W2046462178 startingPage "60" @default.
- W2046462178 abstract "An understanding of processes controlling the behaviour of rare earth elements (REEs) within estuarine sediments is essential for the effective use of REEs as tracers of environmental conditions. This study investigates the enrichment and fractionation of REEs in sediments with abundant iron monosulfides (FeS, measured as acid-volatile sulfide, median = 156 μmol/g) and organic carbon (median = 3.2 mmol/g). We examined sediments collected from a eutrophic estuary in Western Australia, which comprised several sedimentary environments, including sites receiving drainage from acid sulfate soils (ASS). In general, sediment-bound REEs were highly soluble in HCl, with 1 mol/L HCl extractable REE concentrations amounting to > 80% of corresponding total concentrations in approximately 70% of samples. A mid-REE (MREE) enrichment was consistently apparent in all sediment samples, with a median MREE enrichment value of 1.30 (range = 1.13–1.50) for the total REE concentrations and 1.26 (range = 1.17–1.44) in the 1 mol/L HCl extractions. Also, a Ce anomaly was consistently observed in the sediments examined here, with a median value of 1.11 (range = 0.79–1.58) for the total REE concentrations and 1.19 (range = 1.04–1.71) in the 1 mol/L HCl extracts. In general, a minor depletion of heavy-REEs (HREEs) relative to light-REEs (LREEs) was also apparent in many of the sediments (Yb/La < 1). This fractionation trend, in addition to a strong positive correlation between the MREE enrichments and Yb/La ratios, is consistent with sediment organic matter acting as a REE host phase. Abundant sedimentary FeS was also hypothesised to have influenced REE behaviour in the field, based on the high proportion of total REEs extracted by 1 mol/L HCl, as well as strong correlations between total REE concentrations and both total Fe and total S in the sediments examined here. However, in our laboratory experiment we found that REEs exhibit little (or no) short-term sorptive affinity for FeS, implying that if any FeS–REE interactions were occurring, this must involve mechanisms other than rapid sorption to pre-existing FeS. Sites receiving ASS drainage were unique in displaying (1) a strong relative enrichment of total REE concentrations in comparison to non-impacted sites, and (2) a significant positive correlation between the magnitude of the positive Ce anomalies and the magnitude of MREE enrichment. This observation demonstrates the utility of REEs as tracers of anthropogenic influences (especially the influence of ASS drainage) in FeS- and organic-rich estuarine sediments." @default.
- W2046462178 created "2016-06-24" @default.
- W2046462178 creator A5028733424 @default.
- W2046462178 creator A5049000482 @default.
- W2046462178 creator A5065306679 @default.
- W2046462178 creator A5073038128 @default.
- W2046462178 date "2012-05-01" @default.
- W2046462178 modified "2023-10-18" @default.
- W2046462178 title "Enrichment and fractionation of rare earth elements in FeS- and organic-rich estuarine sediments receiving acid sulfate soil drainage" @default.
- W2046462178 cites W150884773 @default.
- W2046462178 cites W184199725 @default.
- W2046462178 cites W1966337220 @default.
- W2046462178 cites W1966929981 @default.
- W2046462178 cites W1969609710 @default.
- W2046462178 cites W1971290329 @default.
- W2046462178 cites W1973774177 @default.
- W2046462178 cites W1974038194 @default.
- W2046462178 cites W1974988427 @default.
- W2046462178 cites W1982985370 @default.
- W2046462178 cites W1983551064 @default.
- W2046462178 cites W1984002985 @default.
- W2046462178 cites W1984458843 @default.
- W2046462178 cites W1994158260 @default.
- W2046462178 cites W1995056746 @default.
- W2046462178 cites W2000017675 @default.
- W2046462178 cites W2000362472 @default.
- W2046462178 cites W2003493616 @default.
- W2046462178 cites W2003950072 @default.
- W2046462178 cites W2007541921 @default.
- W2046462178 cites W2011364586 @default.
- W2046462178 cites W2011968190 @default.
- W2046462178 cites W2011978437 @default.
- W2046462178 cites W2015087393 @default.
- W2046462178 cites W2016101196 @default.
- W2046462178 cites W2018765590 @default.
- W2046462178 cites W2023917499 @default.
- W2046462178 cites W2024986758 @default.
- W2046462178 cites W2027652432 @default.
- W2046462178 cites W2027896519 @default.
- W2046462178 cites W2028042351 @default.
- W2046462178 cites W2028432187 @default.
- W2046462178 cites W2030462897 @default.
- W2046462178 cites W2031068712 @default.
- W2046462178 cites W2032411847 @default.
- W2046462178 cites W2034004974 @default.
- W2046462178 cites W2035859777 @default.
- W2046462178 cites W2037603460 @default.
- W2046462178 cites W2039545638 @default.
- W2046462178 cites W2040852952 @default.
- W2046462178 cites W2041189415 @default.
- W2046462178 cites W2043783121 @default.
- W2046462178 cites W2046761316 @default.
- W2046462178 cites W2050014042 @default.
- W2046462178 cites W2050217215 @default.
- W2046462178 cites W2050434881 @default.
- W2046462178 cites W2054645658 @default.
- W2046462178 cites W2056075713 @default.
- W2046462178 cites W2056627274 @default.
- W2046462178 cites W2058064741 @default.
- W2046462178 cites W2058094044 @default.
- W2046462178 cites W2059217137 @default.
- W2046462178 cites W2059571198 @default.
- W2046462178 cites W2061487695 @default.
- W2046462178 cites W2066200707 @default.
- W2046462178 cites W2067273208 @default.
- W2046462178 cites W2070176920 @default.
- W2046462178 cites W2071172756 @default.
- W2046462178 cites W2072172339 @default.
- W2046462178 cites W2072844995 @default.
- W2046462178 cites W2073456692 @default.
- W2046462178 cites W2073481205 @default.
- W2046462178 cites W2075589619 @default.
- W2046462178 cites W2076671330 @default.
- W2046462178 cites W2085969125 @default.
- W2046462178 cites W2088946205 @default.
- W2046462178 cites W2091794361 @default.
- W2046462178 cites W2094461743 @default.
- W2046462178 cites W2094732368 @default.
- W2046462178 cites W2097386376 @default.
- W2046462178 cites W2100651309 @default.
- W2046462178 cites W2117570738 @default.
- W2046462178 cites W2121536019 @default.
- W2046462178 cites W2155837632 @default.
- W2046462178 cites W2160510795 @default.
- W2046462178 cites W2164983922 @default.
- W2046462178 cites W2167947842 @default.
- W2046462178 cites W2168450335 @default.
- W2046462178 cites W2169599505 @default.
- W2046462178 cites W4254811548 @default.
- W2046462178 cites W4377864722 @default.
- W2046462178 cites W2056295428 @default.
- W2046462178 doi "https://doi.org/10.1016/j.chemgeo.2012.03.012" @default.
- W2046462178 hasPublicationYear "2012" @default.
- W2046462178 type Work @default.
- W2046462178 sameAs 2046462178 @default.
- W2046462178 citedByCount "43" @default.
- W2046462178 countsByYear W20464621782012 @default.
- W2046462178 countsByYear W20464621782013 @default.