Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046472007> ?p ?o ?g. }
- W2046472007 endingPage "2974" @default.
- W2046472007 startingPage "2953" @default.
- W2046472007 abstract "Abstract. A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a long-tail 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle." @default.
- W2046472007 created "2016-06-24" @default.
- W2046472007 creator A5086337448 @default.
- W2046472007 date "2015-05-21" @default.
- W2046472007 modified "2023-10-18" @default.
- W2046472007 title "A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin" @default.
- W2046472007 cites W1502335261 @default.
- W2046472007 cites W1971346020 @default.
- W2046472007 cites W1972395263 @default.
- W2046472007 cites W1974007087 @default.
- W2046472007 cites W1974276191 @default.
- W2046472007 cites W1979453780 @default.
- W2046472007 cites W1991585339 @default.
- W2046472007 cites W2007356790 @default.
- W2046472007 cites W2008502493 @default.
- W2046472007 cites W2011359570 @default.
- W2046472007 cites W2014427515 @default.
- W2046472007 cites W2020232539 @default.
- W2046472007 cites W2020767027 @default.
- W2046472007 cites W2030064926 @default.
- W2046472007 cites W2033201740 @default.
- W2046472007 cites W2035444882 @default.
- W2046472007 cites W2042174120 @default.
- W2046472007 cites W2044299056 @default.
- W2046472007 cites W2045191002 @default.
- W2046472007 cites W2048879061 @default.
- W2046472007 cites W2052420109 @default.
- W2046472007 cites W2054482838 @default.
- W2046472007 cites W2056398498 @default.
- W2046472007 cites W2060404328 @default.
- W2046472007 cites W2061323665 @default.
- W2046472007 cites W2061603569 @default.
- W2046472007 cites W2078922619 @default.
- W2046472007 cites W2084946436 @default.
- W2046472007 cites W2102148143 @default.
- W2046472007 cites W2113215022 @default.
- W2046472007 cites W2128875857 @default.
- W2046472007 cites W2130457878 @default.
- W2046472007 cites W2131203423 @default.
- W2046472007 cites W2133306450 @default.
- W2046472007 cites W2133988076 @default.
- W2046472007 cites W2145003062 @default.
- W2046472007 cites W2149521176 @default.
- W2046472007 cites W2159200641 @default.
- W2046472007 cites W2164911852 @default.
- W2046472007 cites W2165777802 @default.
- W2046472007 cites W2170465842 @default.
- W2046472007 cites W2172088443 @default.
- W2046472007 cites W4233313087 @default.
- W2046472007 doi "https://doi.org/10.5194/bg-12-2953-2015" @default.
- W2046472007 hasPublicationYear "2015" @default.
- W2046472007 type Work @default.
- W2046472007 sameAs 2046472007 @default.
- W2046472007 citedByCount "13" @default.
- W2046472007 countsByYear W20464720072015 @default.
- W2046472007 countsByYear W20464720072016 @default.
- W2046472007 countsByYear W20464720072017 @default.
- W2046472007 countsByYear W20464720072018 @default.
- W2046472007 countsByYear W20464720072019 @default.
- W2046472007 countsByYear W20464720072021 @default.
- W2046472007 countsByYear W20464720072022 @default.
- W2046472007 countsByYear W20464720072023 @default.
- W2046472007 crossrefType "journal-article" @default.
- W2046472007 hasAuthorship W2046472007A5086337448 @default.
- W2046472007 hasBestOaLocation W20464720071 @default.
- W2046472007 hasConcept C100402318 @default.
- W2046472007 hasConcept C111368507 @default.
- W2046472007 hasConcept C114793014 @default.
- W2046472007 hasConcept C122846477 @default.
- W2046472007 hasConcept C127313418 @default.
- W2046472007 hasConcept C15098985 @default.
- W2046472007 hasConcept C151730666 @default.
- W2046472007 hasConcept C15739521 @default.
- W2046472007 hasConcept C178790620 @default.
- W2046472007 hasConcept C184751465 @default.
- W2046472007 hasConcept C185592680 @default.
- W2046472007 hasConcept C186240526 @default.
- W2046472007 hasConcept C201867031 @default.
- W2046472007 hasConcept C2781060337 @default.
- W2046472007 hasConcept C2816523 @default.
- W2046472007 hasConcept C516920438 @default.
- W2046472007 hasConcept C77928131 @default.
- W2046472007 hasConceptScore W2046472007C100402318 @default.
- W2046472007 hasConceptScore W2046472007C111368507 @default.
- W2046472007 hasConceptScore W2046472007C114793014 @default.
- W2046472007 hasConceptScore W2046472007C122846477 @default.
- W2046472007 hasConceptScore W2046472007C127313418 @default.
- W2046472007 hasConceptScore W2046472007C15098985 @default.
- W2046472007 hasConceptScore W2046472007C151730666 @default.
- W2046472007 hasConceptScore W2046472007C15739521 @default.
- W2046472007 hasConceptScore W2046472007C178790620 @default.
- W2046472007 hasConceptScore W2046472007C184751465 @default.
- W2046472007 hasConceptScore W2046472007C185592680 @default.
- W2046472007 hasConceptScore W2046472007C186240526 @default.
- W2046472007 hasConceptScore W2046472007C201867031 @default.
- W2046472007 hasConceptScore W2046472007C2781060337 @default.
- W2046472007 hasConceptScore W2046472007C2816523 @default.
- W2046472007 hasConceptScore W2046472007C516920438 @default.