Matches in SemOpenAlex for { <https://semopenalex.org/work/W2046596031> ?p ?o ?g. }
- W2046596031 endingPage "e7632" @default.
- W2046596031 startingPage "e7632" @default.
- W2046596031 abstract "Background Genetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. Methodology/Principal Findings Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARγ, TSHR, GNAS and NRAS genes. Conclusion/Significance We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas." @default.
- W2046596031 created "2016-06-24" @default.
- W2046596031 creator A5006400001 @default.
- W2046596031 creator A5012435946 @default.
- W2046596031 creator A5014936965 @default.
- W2046596031 creator A5022542147 @default.
- W2046596031 creator A5024937928 @default.
- W2046596031 creator A5027164655 @default.
- W2046596031 creator A5027453118 @default.
- W2046596031 creator A5055724941 @default.
- W2046596031 creator A5060690831 @default.
- W2046596031 creator A5070466557 @default.
- W2046596031 creator A5080779996 @default.
- W2046596031 creator A5081373655 @default.
- W2046596031 date "2009-10-29" @default.
- W2046596031 modified "2023-10-18" @default.
- W2046596031 title "Increasing the Number of Thyroid Lesions Classes in Microarray Analysis Improves the Relevance of Diagnostic Markers" @default.
- W2046596031 cites W1480222970 @default.
- W2046596031 cites W1670226482 @default.
- W2046596031 cites W186292059 @default.
- W2046596031 cites W1886306325 @default.
- W2046596031 cites W1972755526 @default.
- W2046596031 cites W1978067260 @default.
- W2046596031 cites W1979665833 @default.
- W2046596031 cites W1985402095 @default.
- W2046596031 cites W1990196512 @default.
- W2046596031 cites W1995976510 @default.
- W2046596031 cites W2003107969 @default.
- W2046596031 cites W2003559866 @default.
- W2046596031 cites W2006693132 @default.
- W2046596031 cites W2011840673 @default.
- W2046596031 cites W2025551566 @default.
- W2046596031 cites W2044417031 @default.
- W2046596031 cites W2067689492 @default.
- W2046596031 cites W2076336682 @default.
- W2046596031 cites W2077883975 @default.
- W2046596031 cites W2087916660 @default.
- W2046596031 cites W2090842981 @default.
- W2046596031 cites W2094490442 @default.
- W2046596031 cites W2095763381 @default.
- W2046596031 cites W2097911771 @default.
- W2046596031 cites W2102194654 @default.
- W2046596031 cites W2102932869 @default.
- W2046596031 cites W2106625264 @default.
- W2046596031 cites W2108588969 @default.
- W2046596031 cites W2114515835 @default.
- W2046596031 cites W2116135945 @default.
- W2046596031 cites W2118929134 @default.
- W2046596031 cites W2118999833 @default.
- W2046596031 cites W2120568877 @default.
- W2046596031 cites W2120766731 @default.
- W2046596031 cites W2124201592 @default.
- W2046596031 cites W2142101030 @default.
- W2046596031 cites W2150571563 @default.
- W2046596031 cites W2150742225 @default.
- W2046596031 cites W2150853377 @default.
- W2046596031 cites W2151431008 @default.
- W2046596031 cites W2162146868 @default.
- W2046596031 cites W2164133446 @default.
- W2046596031 cites W2164579650 @default.
- W2046596031 cites W2164619408 @default.
- W2046596031 cites W2170209509 @default.
- W2046596031 doi "https://doi.org/10.1371/journal.pone.0007632" @default.
- W2046596031 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2764086" @default.
- W2046596031 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19893615" @default.
- W2046596031 hasPublicationYear "2009" @default.
- W2046596031 type Work @default.
- W2046596031 sameAs 2046596031 @default.
- W2046596031 citedByCount "18" @default.
- W2046596031 countsByYear W20465960312012 @default.
- W2046596031 countsByYear W20465960312013 @default.
- W2046596031 countsByYear W20465960312015 @default.
- W2046596031 countsByYear W20465960312016 @default.
- W2046596031 countsByYear W20465960312017 @default.
- W2046596031 countsByYear W20465960312018 @default.
- W2046596031 countsByYear W20465960312021 @default.
- W2046596031 countsByYear W20465960312023 @default.
- W2046596031 crossrefType "journal-article" @default.
- W2046596031 hasAuthorship W2046596031A5006400001 @default.
- W2046596031 hasAuthorship W2046596031A5012435946 @default.
- W2046596031 hasAuthorship W2046596031A5014936965 @default.
- W2046596031 hasAuthorship W2046596031A5022542147 @default.
- W2046596031 hasAuthorship W2046596031A5024937928 @default.
- W2046596031 hasAuthorship W2046596031A5027164655 @default.
- W2046596031 hasAuthorship W2046596031A5027453118 @default.
- W2046596031 hasAuthorship W2046596031A5055724941 @default.
- W2046596031 hasAuthorship W2046596031A5060690831 @default.
- W2046596031 hasAuthorship W2046596031A5070466557 @default.
- W2046596031 hasAuthorship W2046596031A5080779996 @default.
- W2046596031 hasAuthorship W2046596031A5081373655 @default.
- W2046596031 hasBestOaLocation W20465960311 @default.
- W2046596031 hasConcept C104317684 @default.
- W2046596031 hasConcept C124224327 @default.
- W2046596031 hasConcept C142724271 @default.
- W2046596031 hasConcept C150194340 @default.
- W2046596031 hasConcept C193270364 @default.
- W2046596031 hasConcept C204232928 @default.
- W2046596031 hasConcept C21790070 @default.