Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047047797> ?p ?o ?g. }
- W2047047797 endingPage "2624" @default.
- W2047047797 startingPage "2615" @default.
- W2047047797 abstract "The Kocks–Mecking theory is reformulated by finding a new expression for the recovery rate term. A thermodynamic analysis on an annihilating dislocation segment is performed to determine this rate. By assuming that the velocity distribution of the segment is thermally activated, and that its maximum velocity is bounded by the speed of sound in the material, it is possible to obtain an expression for the energy barrier for annihilation. This is composed of a dislocation formation energy term, approximated by the strain energy around the segment; a migration energy term, taken to be equal to the stored mechanical energy that triggers cross-slip; and a statistical entropy contribution due to the degrees of freedom available to the dislocation for annihilation. It is demonstrated that the statistical entropy plays a crucial role in plasticity; it is determined by the possible dislocation paths and is bounded by both the speed of sound in the material and the proximity of neighbouring dislocations, S=kBlnε˙0ε˙N, where ε˙ is the strain rate, ε˙0 is a constant related to the speed of sound in the material, kB is the Boltzmann constant and N accounts for the interaction of neighbouring dislocations which increases the number of microstates. It is shown that the key material parameters describing plasticity in pure face-centred cubic metals are the stacking fault energy, the cross-slip activation volume and the distance from a dislocation core at which its strain field vanishes. The theory is applied to Cu, Al, Ni and Ag for a wide range of temperatures, showing good agreement with experimental results." @default.
- W2047047797 created "2016-06-24" @default.
- W2047047797 creator A5004014241 @default.
- W2047047797 creator A5059656064 @default.
- W2047047797 creator A5080746286 @default.
- W2047047797 date "2012-04-01" @default.
- W2047047797 modified "2023-10-18" @default.
- W2047047797 title "Dislocation annihilation in plastic deformation: II. Kocks–Mecking Analysis" @default.
- W2047047797 cites W1963924089 @default.
- W2047047797 cites W1965444918 @default.
- W2047047797 cites W1967206392 @default.
- W2047047797 cites W1969120640 @default.
- W2047047797 cites W1972289601 @default.
- W2047047797 cites W1975175506 @default.
- W2047047797 cites W1982895702 @default.
- W2047047797 cites W2007591305 @default.
- W2047047797 cites W2012302151 @default.
- W2047047797 cites W2012625806 @default.
- W2047047797 cites W2016805553 @default.
- W2047047797 cites W2021645390 @default.
- W2047047797 cites W2026488671 @default.
- W2047047797 cites W2034713842 @default.
- W2047047797 cites W2035749838 @default.
- W2047047797 cites W2036732570 @default.
- W2047047797 cites W2040213084 @default.
- W2047047797 cites W2041558403 @default.
- W2047047797 cites W2044146519 @default.
- W2047047797 cites W2048645428 @default.
- W2047047797 cites W2051354212 @default.
- W2047047797 cites W2051747693 @default.
- W2047047797 cites W2057147206 @default.
- W2047047797 cites W2062071143 @default.
- W2047047797 cites W2065847316 @default.
- W2047047797 cites W2070627738 @default.
- W2047047797 cites W2072802230 @default.
- W2047047797 cites W2077899864 @default.
- W2047047797 cites W2079537799 @default.
- W2047047797 cites W2082150373 @default.
- W2047047797 cites W2088259997 @default.
- W2047047797 cites W2113388370 @default.
- W2047047797 cites W2116178337 @default.
- W2047047797 cites W2142586484 @default.
- W2047047797 cites W2347053722 @default.
- W2047047797 doi "https://doi.org/10.1016/j.actamat.2012.01.028" @default.
- W2047047797 hasPublicationYear "2012" @default.
- W2047047797 type Work @default.
- W2047047797 sameAs 2047047797 @default.
- W2047047797 citedByCount "88" @default.
- W2047047797 countsByYear W20470477972012 @default.
- W2047047797 countsByYear W20470477972013 @default.
- W2047047797 countsByYear W20470477972014 @default.
- W2047047797 countsByYear W20470477972015 @default.
- W2047047797 countsByYear W20470477972016 @default.
- W2047047797 countsByYear W20470477972017 @default.
- W2047047797 countsByYear W20470477972018 @default.
- W2047047797 countsByYear W20470477972019 @default.
- W2047047797 countsByYear W20470477972020 @default.
- W2047047797 countsByYear W20470477972021 @default.
- W2047047797 countsByYear W20470477972022 @default.
- W2047047797 countsByYear W20470477972023 @default.
- W2047047797 crossrefType "journal-article" @default.
- W2047047797 hasAuthorship W2047047797A5004014241 @default.
- W2047047797 hasAuthorship W2047047797A5059656064 @default.
- W2047047797 hasAuthorship W2047047797A5080746286 @default.
- W2047047797 hasConcept C121332964 @default.
- W2047047797 hasConcept C149342994 @default.
- W2047047797 hasConcept C159122135 @default.
- W2047047797 hasConcept C159985019 @default.
- W2047047797 hasConcept C185592680 @default.
- W2047047797 hasConcept C192562407 @default.
- W2047047797 hasConcept C195268267 @default.
- W2047047797 hasConcept C201941533 @default.
- W2047047797 hasConcept C22372946 @default.
- W2047047797 hasConcept C2524010 @default.
- W2047047797 hasConcept C26873012 @default.
- W2047047797 hasConcept C33923547 @default.
- W2047047797 hasConcept C57879066 @default.
- W2047047797 hasConcept C62520636 @default.
- W2047047797 hasConcept C79186407 @default.
- W2047047797 hasConcept C8010536 @default.
- W2047047797 hasConcept C81764414 @default.
- W2047047797 hasConcept C83822299 @default.
- W2047047797 hasConcept C97355855 @default.
- W2047047797 hasConceptScore W2047047797C121332964 @default.
- W2047047797 hasConceptScore W2047047797C149342994 @default.
- W2047047797 hasConceptScore W2047047797C159122135 @default.
- W2047047797 hasConceptScore W2047047797C159985019 @default.
- W2047047797 hasConceptScore W2047047797C185592680 @default.
- W2047047797 hasConceptScore W2047047797C192562407 @default.
- W2047047797 hasConceptScore W2047047797C195268267 @default.
- W2047047797 hasConceptScore W2047047797C201941533 @default.
- W2047047797 hasConceptScore W2047047797C22372946 @default.
- W2047047797 hasConceptScore W2047047797C2524010 @default.
- W2047047797 hasConceptScore W2047047797C26873012 @default.
- W2047047797 hasConceptScore W2047047797C33923547 @default.
- W2047047797 hasConceptScore W2047047797C57879066 @default.
- W2047047797 hasConceptScore W2047047797C62520636 @default.
- W2047047797 hasConceptScore W2047047797C79186407 @default.