Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047091489> ?p ?o ?g. }
- W2047091489 endingPage "332" @default.
- W2047091489 startingPage "316" @default.
- W2047091489 abstract "Abstract Riparian floodplains in temperate regions are affected by pronounced seasonal variations in soil and water temperature. This affects the rates and interplay of microbial and abiotic geochemical processes that control the fate of metals in contaminated floodplain soils, including potential release into surface and groundwater during periodic flooding. Here, we investigated how temperature affects chalcophile trace metal contaminants (Cu, Cd, Pb) upon flooding of a riparian soil contaminated by past mining activities. In soil microcosms incubated at 23, 14, and 5 °C, the reductive dissolution of Mn(III,IV) and Fe(III) (oxyhydr)oxides and the release of dissolved Mn 2+ and Fe 2+ were significantly slower and less intense at the lower temperatures, which was reflected in a decrease of trace metal mobilization via the dissolution of metal oxide sorbents and cation competition for sorption sites. The onset of sulfate reduction was significantly delayed at lower temperatures and the apparent rate of sulfate reduction was decreased, especially at 5 °C. This resulted in elevated high dissolved Cu, Cd, and Pb concentrations over weeks of flooding at 5 °C, whereas colloidal metal sulfide formation dominated Cu, Cd, and Pb pore water dynamics at higher temperatures of 14 and 23 °C due to fast sulfate reduction. Cu K-edge X-ray absorption fine structure spectroscopy revealed metallic Cu(0) as the main colloidal Cu species prior to sulfate reduction at all three temperatures. Analytical electron microscopy showed that Cu(0) particles were associated with suspended bacteria, suggesting biomineralization of Cu(0). Upon onset of sulfate reduction, metallic Cu particles were transformed into Cu x S with incorporation of smaller amounts of Cd and Pb. Concomitantly, freely dispersed mixed Cu–Cd–Pb sulfide nanoparticles precipitated in the pore water. Other metals with higher metal sulfide solubility products did not react with the limited amounts of biogenic sulfide. The median size of the mixed metal sulfide nanoparticles increased from 21 nm at 23 °C to 70 nm at 5 °C. During ∼30 days of soil flooding at 23 and 14 °C, Cu speciation in the soil matrix changed from Cu(II) bound to soil organic matter in the oxic soil to 66% Cu x S, with intermittent formation of about 14% metallic Cu(0). In contrast, at 5 °C, sulfate reduction and formation of Cu(0) were strongly retarded. After ∼30 days of flooding at 23 and 14 °C, nearly all Cd and about 25% of total Pb in the soil, were precipitated in mixed metal sulfides. Our results demonstrate that temperature controls trace metal dynamics during soil flooding via its influence on microbial reduction of terminal electron acceptors. Even at low temperatures, soil flooding may trigger the release of chalcophile metals from contaminated floodplain soils by sorbent reduction, competitive sorption, and formation of nanoparticulate metal-bearing colloids." @default.
- W2047091489 created "2016-06-24" @default.
- W2047091489 creator A5008960831 @default.
- W2047091489 creator A5017032128 @default.
- W2047091489 creator A5027867813 @default.
- W2047091489 creator A5062883879 @default.
- W2047091489 creator A5075445204 @default.
- W2047091489 date "2013-02-01" @default.
- W2047091489 modified "2023-10-13" @default.
- W2047091489 title "Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil" @default.
- W2047091489 cites W137384901 @default.
- W2047091489 cites W1553630333 @default.
- W2047091489 cites W1653289927 @default.
- W2047091489 cites W1838729159 @default.
- W2047091489 cites W1848572169 @default.
- W2047091489 cites W1965993821 @default.
- W2047091489 cites W1968848902 @default.
- W2047091489 cites W1969546981 @default.
- W2047091489 cites W1977618354 @default.
- W2047091489 cites W1982312193 @default.
- W2047091489 cites W1982456810 @default.
- W2047091489 cites W1983728617 @default.
- W2047091489 cites W1987835743 @default.
- W2047091489 cites W1990800677 @default.
- W2047091489 cites W1996436023 @default.
- W2047091489 cites W1996793405 @default.
- W2047091489 cites W1999444738 @default.
- W2047091489 cites W2000718064 @default.
- W2047091489 cites W2005227055 @default.
- W2047091489 cites W2006033584 @default.
- W2047091489 cites W2008064043 @default.
- W2047091489 cites W2009024224 @default.
- W2047091489 cites W2015194015 @default.
- W2047091489 cites W2015395789 @default.
- W2047091489 cites W2026705834 @default.
- W2047091489 cites W2030645025 @default.
- W2047091489 cites W2035199515 @default.
- W2047091489 cites W2036953839 @default.
- W2047091489 cites W2039720442 @default.
- W2047091489 cites W2043467778 @default.
- W2047091489 cites W2047490748 @default.
- W2047091489 cites W2048812137 @default.
- W2047091489 cites W2054586603 @default.
- W2047091489 cites W2054988139 @default.
- W2047091489 cites W2058832793 @default.
- W2047091489 cites W2059052415 @default.
- W2047091489 cites W2059803473 @default.
- W2047091489 cites W2060711148 @default.
- W2047091489 cites W2062144566 @default.
- W2047091489 cites W2062630257 @default.
- W2047091489 cites W2065758730 @default.
- W2047091489 cites W2066200707 @default.
- W2047091489 cites W2070227796 @default.
- W2047091489 cites W2074908840 @default.
- W2047091489 cites W2075716815 @default.
- W2047091489 cites W2078208122 @default.
- W2047091489 cites W2078743481 @default.
- W2047091489 cites W2079548947 @default.
- W2047091489 cites W2081384475 @default.
- W2047091489 cites W2083894805 @default.
- W2047091489 cites W2084735597 @default.
- W2047091489 cites W2086373249 @default.
- W2047091489 cites W2086933508 @default.
- W2047091489 cites W2088384256 @default.
- W2047091489 cites W2090083741 @default.
- W2047091489 cites W2090388921 @default.
- W2047091489 cites W2093777953 @default.
- W2047091489 cites W2094141118 @default.
- W2047091489 cites W2096482473 @default.
- W2047091489 cites W2099641946 @default.
- W2047091489 cites W2107327057 @default.
- W2047091489 cites W2109417145 @default.
- W2047091489 cites W2109529289 @default.
- W2047091489 cites W2109944676 @default.
- W2047091489 cites W2136176388 @default.
- W2047091489 cites W2145041606 @default.
- W2047091489 cites W2154562272 @default.
- W2047091489 cites W2156383315 @default.
- W2047091489 cites W2164983922 @default.
- W2047091489 cites W2167674170 @default.
- W2047091489 cites W2168154832 @default.
- W2047091489 cites W2329801065 @default.
- W2047091489 cites W4230039759 @default.
- W2047091489 cites W4247833750 @default.
- W2047091489 cites W5037702 @default.
- W2047091489 doi "https://doi.org/10.1016/j.gca.2012.10.053" @default.
- W2047091489 hasPublicationYear "2013" @default.
- W2047091489 type Work @default.
- W2047091489 sameAs 2047091489 @default.
- W2047091489 citedByCount "67" @default.
- W2047091489 countsByYear W20470914892013 @default.
- W2047091489 countsByYear W20470914892014 @default.
- W2047091489 countsByYear W20470914892015 @default.
- W2047091489 countsByYear W20470914892016 @default.
- W2047091489 countsByYear W20470914892017 @default.
- W2047091489 countsByYear W20470914892018 @default.
- W2047091489 countsByYear W20470914892019 @default.
- W2047091489 countsByYear W20470914892020 @default.