Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047149494> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2047149494 endingPage "1634" @default.
- W2047149494 startingPage "1628" @default.
- W2047149494 abstract "An obstacle in applying artificial neural networks (NNs) to system identification problems is that the dimension and the size of the training set for NNs can be too large to use them effectively in solving a problem with available computational resources. To overcome this obstacle, principal component analysis (PCA) can be used to reduce the dimension of the inputs for the NNs without impairing the integrity of data and orthogonal arrays (OAs) can be used to select a smaller number of training sets that can efficiently represent the given behavior system. NNs with PCA and OAs are used here in solving two parameter identification problems in two different fields. The first problem is identifying the location of damage in cantilever plates using the free vibration response of the structure. The free vibration response is simulated using the finite element method. The second problem is identifying an anomaly in an illuminated opaque homogeneous tissue using near-infrared light based on the simulation of the photon intensity and the photon mean time of flight in perfect and imperfect tissues using the finite element method." @default.
- W2047149494 created "2016-06-24" @default.
- W2047149494 creator A5022023306 @default.
- W2047149494 creator A5051452494 @default.
- W2047149494 date "2006-07-01" @default.
- W2047149494 modified "2023-09-26" @default.
- W2047149494 title "Neural Networks for Inverse Problems Using Principal Component Analysis and Orthogonal Arrays" @default.
- W2047149494 cites W174000207 @default.
- W2047149494 cites W2026186708 @default.
- W2047149494 cites W2029022756 @default.
- W2047149494 cites W2056811448 @default.
- W2047149494 cites W2058121935 @default.
- W2047149494 cites W2110993835 @default.
- W2047149494 cites W2151904753 @default.
- W2047149494 cites W2164668388 @default.
- W2047149494 doi "https://doi.org/10.2514/1.10641" @default.
- W2047149494 hasPublicationYear "2006" @default.
- W2047149494 type Work @default.
- W2047149494 sameAs 2047149494 @default.
- W2047149494 citedByCount "12" @default.
- W2047149494 countsByYear W20471494942012 @default.
- W2047149494 countsByYear W20471494942013 @default.
- W2047149494 countsByYear W20471494942018 @default.
- W2047149494 countsByYear W20471494942019 @default.
- W2047149494 countsByYear W20471494942021 @default.
- W2047149494 crossrefType "journal-article" @default.
- W2047149494 hasAuthorship W2047149494A5022023306 @default.
- W2047149494 hasAuthorship W2047149494A5051452494 @default.
- W2047149494 hasConcept C11413529 @default.
- W2047149494 hasConcept C121332964 @default.
- W2047149494 hasConcept C126255220 @default.
- W2047149494 hasConcept C134306372 @default.
- W2047149494 hasConcept C135252773 @default.
- W2047149494 hasConcept C154945302 @default.
- W2047149494 hasConcept C168167062 @default.
- W2047149494 hasConcept C207467116 @default.
- W2047149494 hasConcept C2524010 @default.
- W2047149494 hasConcept C27438332 @default.
- W2047149494 hasConcept C28826006 @default.
- W2047149494 hasConcept C33923547 @default.
- W2047149494 hasConcept C41008148 @default.
- W2047149494 hasConcept C50644808 @default.
- W2047149494 hasConcept C97355855 @default.
- W2047149494 hasConceptScore W2047149494C11413529 @default.
- W2047149494 hasConceptScore W2047149494C121332964 @default.
- W2047149494 hasConceptScore W2047149494C126255220 @default.
- W2047149494 hasConceptScore W2047149494C134306372 @default.
- W2047149494 hasConceptScore W2047149494C135252773 @default.
- W2047149494 hasConceptScore W2047149494C154945302 @default.
- W2047149494 hasConceptScore W2047149494C168167062 @default.
- W2047149494 hasConceptScore W2047149494C207467116 @default.
- W2047149494 hasConceptScore W2047149494C2524010 @default.
- W2047149494 hasConceptScore W2047149494C27438332 @default.
- W2047149494 hasConceptScore W2047149494C28826006 @default.
- W2047149494 hasConceptScore W2047149494C33923547 @default.
- W2047149494 hasConceptScore W2047149494C41008148 @default.
- W2047149494 hasConceptScore W2047149494C50644808 @default.
- W2047149494 hasConceptScore W2047149494C97355855 @default.
- W2047149494 hasIssue "7" @default.
- W2047149494 hasLocation W20471494941 @default.
- W2047149494 hasOpenAccess W2047149494 @default.
- W2047149494 hasPrimaryLocation W20471494941 @default.
- W2047149494 hasRelatedWork W1484651240 @default.
- W2047149494 hasRelatedWork W1927677835 @default.
- W2047149494 hasRelatedWork W2166814172 @default.
- W2047149494 hasRelatedWork W2378194073 @default.
- W2047149494 hasRelatedWork W2678028941 @default.
- W2047149494 hasRelatedWork W2779338154 @default.
- W2047149494 hasRelatedWork W2949556038 @default.
- W2047149494 hasRelatedWork W2963794791 @default.
- W2047149494 hasRelatedWork W3199540457 @default.
- W2047149494 hasRelatedWork W1823792310 @default.
- W2047149494 hasVolume "44" @default.
- W2047149494 isParatext "false" @default.
- W2047149494 isRetracted "false" @default.
- W2047149494 magId "2047149494" @default.
- W2047149494 workType "article" @default.