Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047225062> ?p ?o ?g. }
- W2047225062 endingPage "8674" @default.
- W2047225062 startingPage "8663" @default.
- W2047225062 abstract "Flow through porous media may be described at either of two length scales. At the scale of a single pore, fluids flow according to the Navier‐Stokes equations and the appropriate boundary conditions. At a larger, volume‐averaged scale, the flow is usually thought to obey a linear Darcy law relating flow rates to pressure gradients and body forces via phenomenological permeability coefficients. Aside from the value of the permeability coefficient, the slow flow of a single fluid in a porous medium is well‐understood within this framework. The situation is considerably different, however, for the simultaneous flow of two or more fluids: not only are the phenomenological coefficients poorly understood, but the form of the macroscopic laws themselves is subject to question. I describe a numerical study of immiscible two‐phase flow in an idealized two‐dimensional porous medium constructed at the pore scale. Results show that the macroscopic flow is a nonlinear function of the applied forces for sufficiently low levels of forcing, but linear thereafter. The crossover, which is not predicted by conventional models, occurs when viscous forces begin to dominate capillary forces; i.e., at a sufficiently high capillary number. In the linear regime, the flow may be described by the linear phenomenological law u i = Σ j L ij f j , where the flow rate u i of the i th fluid is related to the force f j applied to the j th fluid by the matrix of phenomenological coefficients L ij which depends on the relative concentrations of the two fluids. The diagonal terms are proportional to quantities commonly referred to as “relative permeabilities.” The cross terms represent viscous coupling between the two fluids; they are conventionally assumed to be negligible and require special experimental procedures to observe in a laboratory. In contrast, in this numerical study the cross terms are straightforward to measure and are found to be of significant size. The cross terms are additionally observed to be approximately equal, which is the behavior predicted by Onsager's reciprocity theorem. However, persistent transient effects can render the reciprocity unobservable. The numerical study is performed with a discrete numerical model of the molecular dynamics of immiscible mixtures called the immiscible lattice gas. The immiscible lattice gas models both the Navier‐Stokes equations and surface tension. Numerical tests presented here additionally provide quantitative validation of the method's ability to simulate wetting phenomena and the effects of capillary pressure. Whereas the numerical study of the linear phenomenological laws utilizes a highly simplified porous medium with one pore and two throats, numerical examples of wetting and nonwetting invasion experiments in a geometrically complex 2‐D porous medium are also provided." @default.
- W2047225062 created "2016-06-24" @default.
- W2047225062 creator A5049252123 @default.
- W2047225062 date "1990-06-10" @default.
- W2047225062 modified "2023-10-14" @default.
- W2047225062 title "Macroscopic laws for immiscible two‐phase flow in porous media: Results From numerical experiments" @default.
- W2047225062 cites W1976951773 @default.
- W2047225062 cites W1978658717 @default.
- W2047225062 cites W1982259256 @default.
- W2047225062 cites W1983168801 @default.
- W2047225062 cites W2001515948 @default.
- W2047225062 cites W2002116790 @default.
- W2047225062 cites W2003747250 @default.
- W2047225062 cites W2014786311 @default.
- W2047225062 cites W2020027257 @default.
- W2047225062 cites W2028293827 @default.
- W2047225062 cites W2034041663 @default.
- W2047225062 cites W2037598211 @default.
- W2047225062 cites W2048806419 @default.
- W2047225062 cites W2070465413 @default.
- W2047225062 cites W2076588106 @default.
- W2047225062 cites W2079738730 @default.
- W2047225062 cites W2144780999 @default.
- W2047225062 cites W2151177494 @default.
- W2047225062 cites W4230191870 @default.
- W2047225062 cites W4241231172 @default.
- W2047225062 cites W4244360209 @default.
- W2047225062 cites W4376848213 @default.
- W2047225062 doi "https://doi.org/10.1029/jb095ib06p08663" @default.
- W2047225062 hasPublicationYear "1990" @default.
- W2047225062 type Work @default.
- W2047225062 sameAs 2047225062 @default.
- W2047225062 citedByCount "85" @default.
- W2047225062 countsByYear W20472250622013 @default.
- W2047225062 countsByYear W20472250622014 @default.
- W2047225062 countsByYear W20472250622015 @default.
- W2047225062 countsByYear W20472250622017 @default.
- W2047225062 countsByYear W20472250622019 @default.
- W2047225062 countsByYear W20472250622020 @default.
- W2047225062 countsByYear W20472250622021 @default.
- W2047225062 countsByYear W20472250622022 @default.
- W2047225062 countsByYear W20472250622023 @default.
- W2047225062 crossrefType "journal-article" @default.
- W2047225062 hasAuthorship W2047225062A5049252123 @default.
- W2047225062 hasBestOaLocation W20472250621 @default.
- W2047225062 hasConcept C105569014 @default.
- W2047225062 hasConcept C120882062 @default.
- W2047225062 hasConcept C121332964 @default.
- W2047225062 hasConcept C127313418 @default.
- W2047225062 hasConcept C158622935 @default.
- W2047225062 hasConcept C180925781 @default.
- W2047225062 hasConcept C183447037 @default.
- W2047225062 hasConcept C185592680 @default.
- W2047225062 hasConcept C187320778 @default.
- W2047225062 hasConcept C19191322 @default.
- W2047225062 hasConcept C196806460 @default.
- W2047225062 hasConcept C26873012 @default.
- W2047225062 hasConcept C2779569378 @default.
- W2047225062 hasConcept C38349280 @default.
- W2047225062 hasConcept C41625074 @default.
- W2047225062 hasConcept C45502583 @default.
- W2047225062 hasConcept C55493867 @default.
- W2047225062 hasConcept C57879066 @default.
- W2047225062 hasConcept C62520636 @default.
- W2047225062 hasConcept C6648577 @default.
- W2047225062 hasConcept C90278072 @default.
- W2047225062 hasConcept C97355855 @default.
- W2047225062 hasConceptScore W2047225062C105569014 @default.
- W2047225062 hasConceptScore W2047225062C120882062 @default.
- W2047225062 hasConceptScore W2047225062C121332964 @default.
- W2047225062 hasConceptScore W2047225062C127313418 @default.
- W2047225062 hasConceptScore W2047225062C158622935 @default.
- W2047225062 hasConceptScore W2047225062C180925781 @default.
- W2047225062 hasConceptScore W2047225062C183447037 @default.
- W2047225062 hasConceptScore W2047225062C185592680 @default.
- W2047225062 hasConceptScore W2047225062C187320778 @default.
- W2047225062 hasConceptScore W2047225062C19191322 @default.
- W2047225062 hasConceptScore W2047225062C196806460 @default.
- W2047225062 hasConceptScore W2047225062C26873012 @default.
- W2047225062 hasConceptScore W2047225062C2779569378 @default.
- W2047225062 hasConceptScore W2047225062C38349280 @default.
- W2047225062 hasConceptScore W2047225062C41625074 @default.
- W2047225062 hasConceptScore W2047225062C45502583 @default.
- W2047225062 hasConceptScore W2047225062C55493867 @default.
- W2047225062 hasConceptScore W2047225062C57879066 @default.
- W2047225062 hasConceptScore W2047225062C62520636 @default.
- W2047225062 hasConceptScore W2047225062C6648577 @default.
- W2047225062 hasConceptScore W2047225062C90278072 @default.
- W2047225062 hasConceptScore W2047225062C97355855 @default.
- W2047225062 hasIssue "B6" @default.
- W2047225062 hasLocation W20472250621 @default.
- W2047225062 hasOpenAccess W2047225062 @default.
- W2047225062 hasPrimaryLocation W20472250621 @default.
- W2047225062 hasRelatedWork W1981062706 @default.
- W2047225062 hasRelatedWork W1993768229 @default.
- W2047225062 hasRelatedWork W2004848415 @default.
- W2047225062 hasRelatedWork W2043123348 @default.
- W2047225062 hasRelatedWork W2096282572 @default.