Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047410068> ?p ?o ?g. }
- W2047410068 endingPage "566" @default.
- W2047410068 startingPage "555" @default.
- W2047410068 abstract "Abstract When an electronic nose (E-nose) is used to predict the classes of wound infection, its result is not ideal if the original feature matrix extracted from the response of sensors is put into the classifier directly. To acquire more useful information which can improve E-nose's classification accuracy, we present a novel weighted kernel principal component analysis (KPCA) method to process this matrix. In addition, we have also compared it with other existing methods including independent component analysis (ICA), orthogonal signal correction (OSC), locality preserving projections (LPP), principal component analysis (PCA), KPCA and the traditional weighted KPCA. The odors of four different classes of wounds (uninfected and infected with Staphylococcus aureus , Escherichia coli , and Pseudomonas aeruginosa ) are used as the original response of E-nose. Experimental results have demonstrated that the proposed weighted KPCA method outperforms other feature extraction methods." @default.
- W2047410068 created "2016-06-24" @default.
- W2047410068 creator A5029827598 @default.
- W2047410068 creator A5031216167 @default.
- W2047410068 creator A5049882309 @default.
- W2047410068 creator A5054306467 @default.
- W2047410068 creator A5080909831 @default.
- W2047410068 creator A5087637729 @default.
- W2047410068 date "2014-10-01" @default.
- W2047410068 modified "2023-10-12" @default.
- W2047410068 title "Feature extraction of wound infection data for electronic nose based on a novel weighted KPCA" @default.
- W2047410068 cites W1849056771 @default.
- W2047410068 cites W1970975061 @default.
- W2047410068 cites W1972833028 @default.
- W2047410068 cites W1973236629 @default.
- W2047410068 cites W1979416242 @default.
- W2047410068 cites W1996981370 @default.
- W2047410068 cites W2003542821 @default.
- W2047410068 cites W2016625147 @default.
- W2047410068 cites W2018319488 @default.
- W2047410068 cites W2021337450 @default.
- W2047410068 cites W2042996313 @default.
- W2047410068 cites W2051078083 @default.
- W2047410068 cites W2051189900 @default.
- W2047410068 cites W2054341846 @default.
- W2047410068 cites W2063068025 @default.
- W2047410068 cites W2066674831 @default.
- W2047410068 cites W2067162539 @default.
- W2047410068 cites W2080925532 @default.
- W2047410068 cites W2108079240 @default.
- W2047410068 cites W2108384452 @default.
- W2047410068 cites W2109805058 @default.
- W2047410068 cites W2124757684 @default.
- W2047410068 cites W2127409687 @default.
- W2047410068 cites W2136310313 @default.
- W2047410068 cites W2140095548 @default.
- W2047410068 cites W2141224535 @default.
- W2047410068 cites W2171609561 @default.
- W2047410068 cites W38683010 @default.
- W2047410068 doi "https://doi.org/10.1016/j.snb.2014.05.025" @default.
- W2047410068 hasPublicationYear "2014" @default.
- W2047410068 type Work @default.
- W2047410068 sameAs 2047410068 @default.
- W2047410068 citedByCount "55" @default.
- W2047410068 countsByYear W20474100682015 @default.
- W2047410068 countsByYear W20474100682016 @default.
- W2047410068 countsByYear W20474100682017 @default.
- W2047410068 countsByYear W20474100682018 @default.
- W2047410068 countsByYear W20474100682019 @default.
- W2047410068 countsByYear W20474100682020 @default.
- W2047410068 countsByYear W20474100682021 @default.
- W2047410068 countsByYear W20474100682022 @default.
- W2047410068 countsByYear W20474100682023 @default.
- W2047410068 crossrefType "journal-article" @default.
- W2047410068 hasAuthorship W2047410068A5029827598 @default.
- W2047410068 hasAuthorship W2047410068A5031216167 @default.
- W2047410068 hasAuthorship W2047410068A5049882309 @default.
- W2047410068 hasAuthorship W2047410068A5054306467 @default.
- W2047410068 hasAuthorship W2047410068A5080909831 @default.
- W2047410068 hasAuthorship W2047410068A5087637729 @default.
- W2047410068 hasConcept C138885662 @default.
- W2047410068 hasConcept C153180895 @default.
- W2047410068 hasConcept C154945302 @default.
- W2047410068 hasConcept C185592680 @default.
- W2047410068 hasConcept C23895516 @default.
- W2047410068 hasConcept C2776401178 @default.
- W2047410068 hasConcept C41008148 @default.
- W2047410068 hasConcept C41895202 @default.
- W2047410068 hasConcept C43617362 @default.
- W2047410068 hasConcept C4725764 @default.
- W2047410068 hasConcept C52622490 @default.
- W2047410068 hasConceptScore W2047410068C138885662 @default.
- W2047410068 hasConceptScore W2047410068C153180895 @default.
- W2047410068 hasConceptScore W2047410068C154945302 @default.
- W2047410068 hasConceptScore W2047410068C185592680 @default.
- W2047410068 hasConceptScore W2047410068C23895516 @default.
- W2047410068 hasConceptScore W2047410068C2776401178 @default.
- W2047410068 hasConceptScore W2047410068C41008148 @default.
- W2047410068 hasConceptScore W2047410068C41895202 @default.
- W2047410068 hasConceptScore W2047410068C43617362 @default.
- W2047410068 hasConceptScore W2047410068C4725764 @default.
- W2047410068 hasConceptScore W2047410068C52622490 @default.
- W2047410068 hasFunder F4320321543 @default.
- W2047410068 hasFunder F4320335787 @default.
- W2047410068 hasLocation W20474100681 @default.
- W2047410068 hasOpenAccess W2047410068 @default.
- W2047410068 hasPrimaryLocation W20474100681 @default.
- W2047410068 hasRelatedWork W1995957648 @default.
- W2047410068 hasRelatedWork W2016461833 @default.
- W2047410068 hasRelatedWork W2135655321 @default.
- W2047410068 hasRelatedWork W2146076056 @default.
- W2047410068 hasRelatedWork W2147438311 @default.
- W2047410068 hasRelatedWork W2382607599 @default.
- W2047410068 hasRelatedWork W2394228292 @default.
- W2047410068 hasRelatedWork W2788730759 @default.
- W2047410068 hasRelatedWork W2811390910 @default.
- W2047410068 hasRelatedWork W3197541072 @default.
- W2047410068 hasVolume "201" @default.