Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047689905> ?p ?o ?g. }
- W2047689905 endingPage "7477" @default.
- W2047689905 startingPage "7466" @default.
- W2047689905 abstract "Gait modification strategies play an important role in the overall success of total knee arthroplasty. There are a number of studies based on multi-body dynamic (MBD) analysis that have minimized knee adduction moment to offload knee joint. Reducing the knee adduction moment, without consideration of the actual contact pressure, has its own limitations. Moreover, MBD-based framework that mainly relies on iterative trial-and-error analysis, is fairly time consuming. This study embedded a time-delay neural network (TDNN) in a genetic algorithm (GA) as a cost effective computational framework to minimize contact pressure. Multi-body dynamic and finite element analyses were performed to calculate gait kinematics/kinetics and the resultant contact pressure for a number of experimental gait trials. A TDNN was trained to learn the nonlinear relation between gait parameters (inputs) and contact pressures (output). The trained network was then served as a real-time cost function in a GA-based global optimization to calculate contact pressure associated with each potential gait pattern. Two optimization problems were solved: first, knee flexion angle was bounded within the normal patterns and second, knee flexion angle was allowed to be increased beyond the normal walking. Designed gait patterns were evaluated through multi-body dynamic and finite element analyses. The TDNN-GA resulted in realistic gait patterns, compared to literature, which could effectively reduce contact pressure at the medial tibiofemoral knee joint. The first optimized gait pattern reduced the knee contact pressure by up to 21% through modifying the adjacent joint kinematics whilst knee flexion was preserved within normal walking. The second optimized gait pattern achieved a more effective pressure reduction (25%) through a slight increase in the knee flexion at the cost of considerable increase in the ankle joint forces. The proposed approach is a cost-effective computational technique that can be used to design a variety of rehabilitation strategies for different joint replacement with multiple objectives." @default.
- W2047689905 created "2016-06-24" @default.
- W2047689905 creator A5012181087 @default.
- W2047689905 creator A5055174519 @default.
- W2047689905 creator A5059007121 @default.
- W2047689905 date "2014-11-01" @default.
- W2047689905 modified "2023-09-27" @default.
- W2047689905 title "Gait modification and optimization using neural network–genetic algorithm approach: Application to knee rehabilitation" @default.
- W2047689905 cites W166791520 @default.
- W2047689905 cites W1971368437 @default.
- W2047689905 cites W1972617433 @default.
- W2047689905 cites W1986118297 @default.
- W2047689905 cites W1992643632 @default.
- W2047689905 cites W1994651394 @default.
- W2047689905 cites W1999129328 @default.
- W2047689905 cites W2016295900 @default.
- W2047689905 cites W2016476372 @default.
- W2047689905 cites W2019698493 @default.
- W2047689905 cites W2020758479 @default.
- W2047689905 cites W2020787308 @default.
- W2047689905 cites W2023669923 @default.
- W2047689905 cites W2028777052 @default.
- W2047689905 cites W2033043724 @default.
- W2047689905 cites W2036407851 @default.
- W2047689905 cites W2039041360 @default.
- W2047689905 cites W2039846442 @default.
- W2047689905 cites W2039989144 @default.
- W2047689905 cites W2040023707 @default.
- W2047689905 cites W2047318133 @default.
- W2047689905 cites W2048365541 @default.
- W2047689905 cites W2050374468 @default.
- W2047689905 cites W2051812123 @default.
- W2047689905 cites W2052867267 @default.
- W2047689905 cites W2059593862 @default.
- W2047689905 cites W2067683752 @default.
- W2047689905 cites W2071000266 @default.
- W2047689905 cites W2075239461 @default.
- W2047689905 cites W2084465484 @default.
- W2047689905 cites W2087228859 @default.
- W2047689905 cites W2090415544 @default.
- W2047689905 cites W2091552738 @default.
- W2047689905 cites W2091848664 @default.
- W2047689905 cites W2104641680 @default.
- W2047689905 cites W2109113925 @default.
- W2047689905 cites W2116531629 @default.
- W2047689905 cites W2116540980 @default.
- W2047689905 cites W2120152816 @default.
- W2047689905 cites W2124660635 @default.
- W2047689905 cites W2129093786 @default.
- W2047689905 cites W2129888555 @default.
- W2047689905 cites W2141640701 @default.
- W2047689905 cites W2151663076 @default.
- W2047689905 cites W2158014199 @default.
- W2047689905 doi "https://doi.org/10.1016/j.eswa.2014.06.034" @default.
- W2047689905 hasPublicationYear "2014" @default.
- W2047689905 type Work @default.
- W2047689905 sameAs 2047689905 @default.
- W2047689905 citedByCount "21" @default.
- W2047689905 countsByYear W20476899052015 @default.
- W2047689905 countsByYear W20476899052016 @default.
- W2047689905 countsByYear W20476899052017 @default.
- W2047689905 countsByYear W20476899052018 @default.
- W2047689905 countsByYear W20476899052019 @default.
- W2047689905 countsByYear W20476899052020 @default.
- W2047689905 countsByYear W20476899052021 @default.
- W2047689905 countsByYear W20476899052022 @default.
- W2047689905 countsByYear W20476899052023 @default.
- W2047689905 crossrefType "journal-article" @default.
- W2047689905 hasAuthorship W2047689905A5012181087 @default.
- W2047689905 hasAuthorship W2047689905A5055174519 @default.
- W2047689905 hasAuthorship W2047689905A5059007121 @default.
- W2047689905 hasBestOaLocation W20476899052 @default.
- W2047689905 hasConcept C11413529 @default.
- W2047689905 hasConcept C119857082 @default.
- W2047689905 hasConcept C121332964 @default.
- W2047689905 hasConcept C127413603 @default.
- W2047689905 hasConcept C141071460 @default.
- W2047689905 hasConcept C151800584 @default.
- W2047689905 hasConcept C154945302 @default.
- W2047689905 hasConcept C173906292 @default.
- W2047689905 hasConcept C176066374 @default.
- W2047689905 hasConcept C2908736133 @default.
- W2047689905 hasConcept C39920418 @default.
- W2047689905 hasConcept C41008148 @default.
- W2047689905 hasConcept C41325743 @default.
- W2047689905 hasConcept C50644808 @default.
- W2047689905 hasConcept C71924100 @default.
- W2047689905 hasConcept C74650414 @default.
- W2047689905 hasConcept C78519656 @default.
- W2047689905 hasConcept C8880873 @default.
- W2047689905 hasConcept C99508421 @default.
- W2047689905 hasConceptScore W2047689905C11413529 @default.
- W2047689905 hasConceptScore W2047689905C119857082 @default.
- W2047689905 hasConceptScore W2047689905C121332964 @default.
- W2047689905 hasConceptScore W2047689905C127413603 @default.
- W2047689905 hasConceptScore W2047689905C141071460 @default.
- W2047689905 hasConceptScore W2047689905C151800584 @default.
- W2047689905 hasConceptScore W2047689905C154945302 @default.