Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047739350> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2047739350 endingPage "93" @default.
- W2047739350 startingPage "81" @default.
- W2047739350 abstract "Graph algorithms play a prominent role in several fields of sciences and engineering. Notable among them are graph traversal, finding the connected components of a graph, and computing shortest paths. There are several efficient implementations of the above problems on a variety of modern multiprocessor architectures. It can be noticed in recent times that the size of the graphs that correspond to real world datasets has been increasing. Parallelism offers only a limited succor to this situation as current parallel architectures have severe short-comings when deployed for most graph algorithms. At the same time, these graphs are also getting very sparse in nature. This calls for particular solution strategies aimed at processing large, sparse graphs on modern parallel architectures. In this paper, we introduce graph pruning as a technique that aims to reduce the size of the graph. Certain elements of the graph can be pruned depending on the nature of the computation. Once a solution is obtained on the pruned graph, the solution is extended to the entire graph. Towards, this end we investigate pruning based on two strategies that justifies their use in current real world graphs. We apply the above technique on three fundamental graph algorithms: breadth first search (BFS), Connected Components (CC), and All Pairs Shortest Paths (APSP). For experimentations, we use three different sources for real world graphs. To validate our technique, we implement our algorithms on a heterogeneous platform consisting of a multicore CPU and a GPU. On this platform, we achieve an average of 35% improvement compared to state-of-the-art solutions. Such an improvement has the potential to speed up other applications reliant on these algorithms. • Processing real world graphs in an efficient manner through input pruning. • Two different pruning strategies based on 1-degree nodes and articulation points. • Improvements upto 35% or 1.57x over current best known results. • Experimental evaluation of algorithms proposed on several real world graphs. • Heterogeneous multicore implementation provides better performance efficiency." @default.
- W2047739350 created "2016-06-24" @default.
- W2047739350 creator A5002481103 @default.
- W2047739350 creator A5023412602 @default.
- W2047739350 creator A5029693326 @default.
- W2047739350 creator A5055659493 @default.
- W2047739350 creator A5066246307 @default.
- W2047739350 date "2015-02-01" @default.
- W2047739350 modified "2023-10-16" @default.
- W2047739350 title "Work efficient parallel algorithms for large graph exploration on emerging heterogeneous architectures" @default.
- W2047739350 cites W116402479 @default.
- W2047739350 cites W1482680420 @default.
- W2047739350 cites W1968579524 @default.
- W2047739350 cites W1978583881 @default.
- W2047739350 cites W1994473607 @default.
- W2047739350 cites W1998992875 @default.
- W2047739350 cites W2004350101 @default.
- W2047739350 cites W2022980325 @default.
- W2047739350 cites W2028583484 @default.
- W2047739350 cites W2034924661 @default.
- W2047739350 cites W2035449679 @default.
- W2047739350 cites W2044146725 @default.
- W2047739350 cites W2046946959 @default.
- W2047739350 cites W2055497547 @default.
- W2047739350 cites W2072637458 @default.
- W2047739350 cites W2113300255 @default.
- W2047739350 cites W2117758387 @default.
- W2047739350 cites W2146591355 @default.
- W2047739350 doi "https://doi.org/10.1016/j.jpdc.2014.11.006" @default.
- W2047739350 hasPublicationYear "2015" @default.
- W2047739350 type Work @default.
- W2047739350 sameAs 2047739350 @default.
- W2047739350 citedByCount "9" @default.
- W2047739350 countsByYear W20477393502016 @default.
- W2047739350 countsByYear W20477393502017 @default.
- W2047739350 countsByYear W20477393502018 @default.
- W2047739350 countsByYear W20477393502019 @default.
- W2047739350 countsByYear W20477393502020 @default.
- W2047739350 countsByYear W20477393502021 @default.
- W2047739350 crossrefType "journal-article" @default.
- W2047739350 hasAuthorship W2047739350A5002481103 @default.
- W2047739350 hasAuthorship W2047739350A5023412602 @default.
- W2047739350 hasAuthorship W2047739350A5029693326 @default.
- W2047739350 hasAuthorship W2047739350A5055659493 @default.
- W2047739350 hasAuthorship W2047739350A5066246307 @default.
- W2047739350 hasConcept C11413529 @default.
- W2047739350 hasConcept C132525143 @default.
- W2047739350 hasConcept C138843760 @default.
- W2047739350 hasConcept C140745168 @default.
- W2047739350 hasConcept C173608175 @default.
- W2047739350 hasConcept C199360897 @default.
- W2047739350 hasConcept C26713055 @default.
- W2047739350 hasConcept C2986651925 @default.
- W2047739350 hasConcept C41008148 @default.
- W2047739350 hasConcept C78766204 @default.
- W2047739350 hasConcept C80444323 @default.
- W2047739350 hasConcept C96333769 @default.
- W2047739350 hasConceptScore W2047739350C11413529 @default.
- W2047739350 hasConceptScore W2047739350C132525143 @default.
- W2047739350 hasConceptScore W2047739350C138843760 @default.
- W2047739350 hasConceptScore W2047739350C140745168 @default.
- W2047739350 hasConceptScore W2047739350C173608175 @default.
- W2047739350 hasConceptScore W2047739350C199360897 @default.
- W2047739350 hasConceptScore W2047739350C26713055 @default.
- W2047739350 hasConceptScore W2047739350C2986651925 @default.
- W2047739350 hasConceptScore W2047739350C41008148 @default.
- W2047739350 hasConceptScore W2047739350C78766204 @default.
- W2047739350 hasConceptScore W2047739350C80444323 @default.
- W2047739350 hasConceptScore W2047739350C96333769 @default.
- W2047739350 hasLocation W20477393501 @default.
- W2047739350 hasOpenAccess W2047739350 @default.
- W2047739350 hasPrimaryLocation W20477393501 @default.
- W2047739350 hasRelatedWork W1981579732 @default.
- W2047739350 hasRelatedWork W2026812620 @default.
- W2047739350 hasRelatedWork W2036850008 @default.
- W2047739350 hasRelatedWork W2047739350 @default.
- W2047739350 hasRelatedWork W2061660549 @default.
- W2047739350 hasRelatedWork W2171531069 @default.
- W2047739350 hasRelatedWork W2765934619 @default.
- W2047739350 hasRelatedWork W3006582303 @default.
- W2047739350 hasRelatedWork W3094989083 @default.
- W2047739350 hasRelatedWork W4243955774 @default.
- W2047739350 hasVolume "76" @default.
- W2047739350 isParatext "false" @default.
- W2047739350 isRetracted "false" @default.
- W2047739350 magId "2047739350" @default.
- W2047739350 workType "article" @default.