Matches in SemOpenAlex for { <https://semopenalex.org/work/W2047924980> ?p ?o ?g. }
- W2047924980 endingPage "228" @default.
- W2047924980 startingPage "214" @default.
- W2047924980 abstract "Pattern recognition methods often deal with samples consisting of thousands of features. Therefore, the reduction of their dimensionality becomes crucial to make the data sets tractable. Feature selection techniques remove the irrelevant and noisy features and select a subset of features which describe better the samples and produce a better classification performance. In this paper, we propose a novel feature selection method for supervised classification within an information-theoretic framework. Mutual information is exploited for measuring the statistical relation between a subset of features and the class labels of the samples. Traditionally it has been measured for ranking single features; however, in most data sets the features are not independent and their combination provides much more information about the class than the sum of their individual prediction power. We analyze the use of different estimation methods which bypass the density estimation and estimate entropy and mutual information directly from the set of samples. These methods allow us to efficiently evaluate multivariate sets of thousands of features. Within this framework we experiment with spectral graph features extracted from 3D shapes. Most of the existing graph classification techniques rely on the graph attributes. We use unattributed graphs to show what is the contribution of each spectral feature to graph classification. Apart from succeeding to classify graphs from shapes relying only on their structure, we test to what extent the set of selected spectral features are robust to perturbations of the dataset." @default.
- W2047924980 created "2016-06-24" @default.
- W2047924980 creator A5019943145 @default.
- W2047924980 creator A5025286783 @default.
- W2047924980 creator A5049857254 @default.
- W2047924980 creator A5058035420 @default.
- W2047924980 date "2013-03-01" @default.
- W2047924980 modified "2023-09-27" @default.
- W2047924980 title "Information-theoretic selection of high-dimensional spectral features for structural recognition" @default.
- W2047924980 cites W1509828380 @default.
- W2047924980 cites W1583145088 @default.
- W2047924980 cites W1597397461 @default.
- W2047924980 cites W1981050900 @default.
- W2047924980 cites W1992536060 @default.
- W2047924980 cites W2006304808 @default.
- W2047924980 cites W2008794359 @default.
- W2047924980 cites W2018934112 @default.
- W2047924980 cites W2020291010 @default.
- W2047924980 cites W2021122545 @default.
- W2047924980 cites W2023056405 @default.
- W2047924980 cites W2036163530 @default.
- W2047924980 cites W2051998685 @default.
- W2047924980 cites W2053798192 @default.
- W2047924980 cites W2054389514 @default.
- W2047924980 cites W2058439224 @default.
- W2047924980 cites W2060677448 @default.
- W2047924980 cites W2067812894 @default.
- W2047924980 cites W2075608792 @default.
- W2047924980 cites W2085308652 @default.
- W2047924980 cites W2087758610 @default.
- W2047924980 cites W2089125183 @default.
- W2047924980 cites W2092512661 @default.
- W2047924980 cites W2092939357 @default.
- W2047924980 cites W2094826395 @default.
- W2047924980 cites W2104403684 @default.
- W2047924980 cites W2106594283 @default.
- W2047924980 cites W2107703225 @default.
- W2047924980 cites W2107969104 @default.
- W2047924980 cites W2114771311 @default.
- W2047924980 cites W2121947440 @default.
- W2047924980 cites W2129000925 @default.
- W2047924980 cites W2130470622 @default.
- W2047924980 cites W2143931888 @default.
- W2047924980 cites W2147254331 @default.
- W2047924980 cites W2154053567 @default.
- W2047924980 cites W2155010204 @default.
- W2047924980 cites W2158155276 @default.
- W2047924980 cites W2165939338 @default.
- W2047924980 doi "https://doi.org/10.1016/j.cviu.2012.11.007" @default.
- W2047924980 hasPublicationYear "2013" @default.
- W2047924980 type Work @default.
- W2047924980 sameAs 2047924980 @default.
- W2047924980 citedByCount "26" @default.
- W2047924980 countsByYear W20479249802013 @default.
- W2047924980 countsByYear W20479249802014 @default.
- W2047924980 countsByYear W20479249802015 @default.
- W2047924980 countsByYear W20479249802016 @default.
- W2047924980 countsByYear W20479249802017 @default.
- W2047924980 countsByYear W20479249802018 @default.
- W2047924980 countsByYear W20479249802019 @default.
- W2047924980 countsByYear W20479249802020 @default.
- W2047924980 countsByYear W20479249802021 @default.
- W2047924980 countsByYear W20479249802022 @default.
- W2047924980 crossrefType "journal-article" @default.
- W2047924980 hasAuthorship W2047924980A5019943145 @default.
- W2047924980 hasAuthorship W2047924980A5025286783 @default.
- W2047924980 hasAuthorship W2047924980A5049857254 @default.
- W2047924980 hasAuthorship W2047924980A5058035420 @default.
- W2047924980 hasBestOaLocation W20479249802 @default.
- W2047924980 hasConcept C106301342 @default.
- W2047924980 hasConcept C111030470 @default.
- W2047924980 hasConcept C121332964 @default.
- W2047924980 hasConcept C124101348 @default.
- W2047924980 hasConcept C132525143 @default.
- W2047924980 hasConcept C148483581 @default.
- W2047924980 hasConcept C152139883 @default.
- W2047924980 hasConcept C153180895 @default.
- W2047924980 hasConcept C154945302 @default.
- W2047924980 hasConcept C33923547 @default.
- W2047924980 hasConcept C41008148 @default.
- W2047924980 hasConcept C62520636 @default.
- W2047924980 hasConcept C70518039 @default.
- W2047924980 hasConcept C80444323 @default.
- W2047924980 hasConceptScore W2047924980C106301342 @default.
- W2047924980 hasConceptScore W2047924980C111030470 @default.
- W2047924980 hasConceptScore W2047924980C121332964 @default.
- W2047924980 hasConceptScore W2047924980C124101348 @default.
- W2047924980 hasConceptScore W2047924980C132525143 @default.
- W2047924980 hasConceptScore W2047924980C148483581 @default.
- W2047924980 hasConceptScore W2047924980C152139883 @default.
- W2047924980 hasConceptScore W2047924980C153180895 @default.
- W2047924980 hasConceptScore W2047924980C154945302 @default.
- W2047924980 hasConceptScore W2047924980C33923547 @default.
- W2047924980 hasConceptScore W2047924980C41008148 @default.
- W2047924980 hasConceptScore W2047924980C62520636 @default.
- W2047924980 hasConceptScore W2047924980C70518039 @default.
- W2047924980 hasConceptScore W2047924980C80444323 @default.
- W2047924980 hasIssue "3" @default.