Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048005358> ?p ?o ?g. }
- W2048005358 endingPage "784" @default.
- W2048005358 startingPage "771" @default.
- W2048005358 abstract "A comparison is made between available literature and present results of the three major types of polylactide (PLA) degradation giving a compiled view on the details of degradation mechanisms with relation to explicit factors affecting degradation. The temporal decrease of molar mass has been analyzed under isothermal conditions at 220 °C, biological and photodegradation conditions using a polylactide (PLA) with ∼4 mol% D units. The decrease of molar mass with time during biodegradation follows a first order process (M = Moe−kt) while the molar mass of specimens tested during thermal and photodegradation follows a second order law (1/M = (1/Mo) + kt) Literature data obtained in similar degradation conditions were also adequately fitted with these equations. This allows us to conclude that the main step in the three types of degradation is a random chain excision, with some differences in the algebraic functionality. Under the degradation conditions tested, the degradation rate follows the progression thermal > photo > biological. For equivalent molar mass, the effect of degradation type on cold crystallization and melting is significant indicating that degradation cannot be explained by a solely outcome of chains breakage and molar mass reduction. This feature is especially prominent when the linear growth rates of specimens subjected to bio or photo degradation are compared. Anhydride groups that are formed during photodegradation decrease the crystallization rate compared to biodegraded specimens of equivalent molar mass. The molar mass dependence of the maximum growth rate follows a power law with exponents 1.3 for bio and 1.0 for photodegraded specimens, representative of semi-entangled systems. The temperature coefficient of the growth rate, analyzed according to secondary nucleation leads to a linear dependence for bio and photodegraded specimens, and to values of the surface free energy of crystallites that decrease from ∼85 to 55 erg/cm2 with decreasing molar mass. Combinations of molar mass characterization, FTIR, and thermal and crystallization rate analysis are proven useful strategies to assess and discriminate macroscopic changes of PLA structure induced by different types of degradation. This work also underlines the importance of analyzing the linear growth rates as a parameter that uncovers specific structural changes during degradation." @default.
- W2048005358 created "2016-06-24" @default.
- W2048005358 creator A5055105503 @default.
- W2048005358 creator A5064737851 @default.
- W2048005358 creator A5081798478 @default.
- W2048005358 date "2013-03-01" @default.
- W2048005358 modified "2023-09-27" @default.
- W2048005358 title "Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates" @default.
- W2048005358 cites W1212948 @default.
- W2048005358 cites W141395291 @default.
- W2048005358 cites W1935327567 @default.
- W2048005358 cites W1964006953 @default.
- W2048005358 cites W1971352671 @default.
- W2048005358 cites W1972120195 @default.
- W2048005358 cites W1973633347 @default.
- W2048005358 cites W1974850141 @default.
- W2048005358 cites W1987125104 @default.
- W2048005358 cites W2000467519 @default.
- W2048005358 cites W2000999125 @default.
- W2048005358 cites W2003660537 @default.
- W2048005358 cites W2012045459 @default.
- W2048005358 cites W2012082504 @default.
- W2048005358 cites W2015972413 @default.
- W2048005358 cites W2017223264 @default.
- W2048005358 cites W2018834497 @default.
- W2048005358 cites W2019032514 @default.
- W2048005358 cites W2020260244 @default.
- W2048005358 cites W2021094413 @default.
- W2048005358 cites W2027301701 @default.
- W2048005358 cites W2029705383 @default.
- W2048005358 cites W2032721736 @default.
- W2048005358 cites W2034010349 @default.
- W2048005358 cites W2038798099 @default.
- W2048005358 cites W2040729039 @default.
- W2048005358 cites W2044966259 @default.
- W2048005358 cites W2047482802 @default.
- W2048005358 cites W2051101763 @default.
- W2048005358 cites W2053346174 @default.
- W2048005358 cites W2053725265 @default.
- W2048005358 cites W2057069446 @default.
- W2048005358 cites W2065168696 @default.
- W2048005358 cites W2066087222 @default.
- W2048005358 cites W2066116711 @default.
- W2048005358 cites W2066468072 @default.
- W2048005358 cites W2067854604 @default.
- W2048005358 cites W2068442209 @default.
- W2048005358 cites W2070986076 @default.
- W2048005358 cites W2074073285 @default.
- W2048005358 cites W2076659676 @default.
- W2048005358 cites W2077457798 @default.
- W2048005358 cites W2078216805 @default.
- W2048005358 cites W2083209460 @default.
- W2048005358 cites W2083378736 @default.
- W2048005358 cites W2084038659 @default.
- W2048005358 cites W2085140057 @default.
- W2048005358 cites W2085272436 @default.
- W2048005358 cites W2088225465 @default.
- W2048005358 cites W2088557262 @default.
- W2048005358 cites W2097148125 @default.
- W2048005358 cites W2097731216 @default.
- W2048005358 cites W2098293810 @default.
- W2048005358 cites W2109077729 @default.
- W2048005358 cites W2116684625 @default.
- W2048005358 cites W2126629716 @default.
- W2048005358 cites W2135436984 @default.
- W2048005358 cites W2139699200 @default.
- W2048005358 cites W2141761639 @default.
- W2048005358 cites W2146681273 @default.
- W2048005358 cites W2156370397 @default.
- W2048005358 cites W2162786412 @default.
- W2048005358 cites W2170121891 @default.
- W2048005358 cites W2171994576 @default.
- W2048005358 cites W2325667068 @default.
- W2048005358 cites W2332391986 @default.
- W2048005358 cites W2491688432 @default.
- W2048005358 cites W339706922 @default.
- W2048005358 cites W4251032101 @default.
- W2048005358 cites W4252683376 @default.
- W2048005358 cites W82548063 @default.
- W2048005358 doi "https://doi.org/10.1016/j.polymdegradstab.2012.12.012" @default.
- W2048005358 hasPublicationYear "2013" @default.
- W2048005358 type Work @default.
- W2048005358 sameAs 2048005358 @default.
- W2048005358 citedByCount "52" @default.
- W2048005358 countsByYear W20480053582013 @default.
- W2048005358 countsByYear W20480053582014 @default.
- W2048005358 countsByYear W20480053582015 @default.
- W2048005358 countsByYear W20480053582016 @default.
- W2048005358 countsByYear W20480053582017 @default.
- W2048005358 countsByYear W20480053582018 @default.
- W2048005358 countsByYear W20480053582019 @default.
- W2048005358 countsByYear W20480053582020 @default.
- W2048005358 countsByYear W20480053582021 @default.
- W2048005358 countsByYear W20480053582022 @default.
- W2048005358 countsByYear W20480053582023 @default.
- W2048005358 crossrefType "journal-article" @default.
- W2048005358 hasAuthorship W2048005358A5055105503 @default.
- W2048005358 hasAuthorship W2048005358A5064737851 @default.