Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048147566> ?p ?o ?g. }
- W2048147566 endingPage "14" @default.
- W2048147566 startingPage "1" @default.
- W2048147566 abstract "Landscape pattern represents a key variable in management and understanding of the environment, as well as driving many environmental models. Remote sensing can be used to provide information on the spatial pattern of land cover features, but analysis and classification of such imagery suffers from the problem of class mixing within pixels. Soft classification techniques can estimate the class composition of image pixels. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field-of-view (IFOV) represented by the pixel. Techniques to provide an improved spatial representation of land cover targets larger than the size of a pixel have been developed. However, the mapping of subpixel scale land cover features has yet to be investigated. We recently described the application of a Hopfield neural network technique to super-resolution mapping of land cover features larger than a pixel, using information of pixel composition determined from soft classification, and now show how our approach can be extended in a new way to predict the spatial pattern of subpixel scale features. The network converges to a minimum of an energy function defined as a goal and several constraints. Prior information on the typical spatial arrangement of the particular land cover types is incorporated into the energy function as a semivariance constraint. This produces a prediction of the spatial pattern of the land cover in question, at the subpixel scale. The technique is applied to synthetic and simulated Landsat Thematic Mapper (TM) imagery, and compared to results of an existing super-resolution target identification technique. Results show that the new approach represents a simple, robust, and efficient tool for super-resolution land cover pattern prediction from remotely sensed imagery." @default.
- W2048147566 created "2016-06-24" @default.
- W2048147566 creator A5004269241 @default.
- W2048147566 date "2002-01-01" @default.
- W2048147566 modified "2023-10-13" @default.
- W2048147566 title "Super-resolution land cover pattern prediction using a Hopfield neural network" @default.
- W2048147566 cites W1488920388 @default.
- W2048147566 cites W1503349928 @default.
- W2048147566 cites W1562895369 @default.
- W2048147566 cites W1563724894 @default.
- W2048147566 cites W1578368825 @default.
- W2048147566 cites W1597286183 @default.
- W2048147566 cites W1618488517 @default.
- W2048147566 cites W1966669709 @default.
- W2048147566 cites W1967329996 @default.
- W2048147566 cites W1979797212 @default.
- W2048147566 cites W1991018729 @default.
- W2048147566 cites W1998902551 @default.
- W2048147566 cites W2001581479 @default.
- W2048147566 cites W2002087357 @default.
- W2048147566 cites W2013648735 @default.
- W2048147566 cites W2019899368 @default.
- W2048147566 cites W2031456617 @default.
- W2048147566 cites W2055265969 @default.
- W2048147566 cites W2069825956 @default.
- W2048147566 cites W2087568259 @default.
- W2048147566 cites W2096919863 @default.
- W2048147566 cites W2098865487 @default.
- W2048147566 cites W2100701194 @default.
- W2048147566 cites W2105058098 @default.
- W2048147566 cites W2108192656 @default.
- W2048147566 cites W2112246162 @default.
- W2048147566 cites W2117264210 @default.
- W2048147566 cites W2132967849 @default.
- W2048147566 cites W2135162579 @default.
- W2048147566 cites W2143056646 @default.
- W2048147566 cites W2505669586 @default.
- W2048147566 cites W256717914 @default.
- W2048147566 cites W3118773878 @default.
- W2048147566 doi "https://doi.org/10.1016/s0034-4257(01)00229-2" @default.
- W2048147566 hasPublicationYear "2002" @default.
- W2048147566 type Work @default.
- W2048147566 sameAs 2048147566 @default.
- W2048147566 citedByCount "222" @default.
- W2048147566 countsByYear W20481475662012 @default.
- W2048147566 countsByYear W20481475662013 @default.
- W2048147566 countsByYear W20481475662014 @default.
- W2048147566 countsByYear W20481475662015 @default.
- W2048147566 countsByYear W20481475662016 @default.
- W2048147566 countsByYear W20481475662017 @default.
- W2048147566 countsByYear W20481475662018 @default.
- W2048147566 countsByYear W20481475662019 @default.
- W2048147566 countsByYear W20481475662020 @default.
- W2048147566 countsByYear W20481475662021 @default.
- W2048147566 countsByYear W20481475662022 @default.
- W2048147566 countsByYear W20481475662023 @default.
- W2048147566 crossrefType "journal-article" @default.
- W2048147566 hasAuthorship W2048147566A5004269241 @default.
- W2048147566 hasBestOaLocation W20481475662 @default.
- W2048147566 hasConcept C127413603 @default.
- W2048147566 hasConcept C147176958 @default.
- W2048147566 hasConcept C153180895 @default.
- W2048147566 hasConcept C154945302 @default.
- W2048147566 hasConcept C160633673 @default.
- W2048147566 hasConcept C205372480 @default.
- W2048147566 hasConcept C205649164 @default.
- W2048147566 hasConcept C2775938548 @default.
- W2048147566 hasConcept C2778102629 @default.
- W2048147566 hasConcept C2780648208 @default.
- W2048147566 hasConcept C41008148 @default.
- W2048147566 hasConcept C4792198 @default.
- W2048147566 hasConcept C50644808 @default.
- W2048147566 hasConcept C62649853 @default.
- W2048147566 hasConcept C68516990 @default.
- W2048147566 hasConceptScore W2048147566C127413603 @default.
- W2048147566 hasConceptScore W2048147566C147176958 @default.
- W2048147566 hasConceptScore W2048147566C153180895 @default.
- W2048147566 hasConceptScore W2048147566C154945302 @default.
- W2048147566 hasConceptScore W2048147566C160633673 @default.
- W2048147566 hasConceptScore W2048147566C205372480 @default.
- W2048147566 hasConceptScore W2048147566C205649164 @default.
- W2048147566 hasConceptScore W2048147566C2775938548 @default.
- W2048147566 hasConceptScore W2048147566C2778102629 @default.
- W2048147566 hasConceptScore W2048147566C2780648208 @default.
- W2048147566 hasConceptScore W2048147566C41008148 @default.
- W2048147566 hasConceptScore W2048147566C4792198 @default.
- W2048147566 hasConceptScore W2048147566C50644808 @default.
- W2048147566 hasConceptScore W2048147566C62649853 @default.
- W2048147566 hasConceptScore W2048147566C68516990 @default.
- W2048147566 hasIssue "1" @default.
- W2048147566 hasLocation W20481475661 @default.
- W2048147566 hasLocation W20481475662 @default.
- W2048147566 hasOpenAccess W2048147566 @default.
- W2048147566 hasPrimaryLocation W20481475661 @default.
- W2048147566 hasRelatedWork W1971218353 @default.
- W2048147566 hasRelatedWork W2004818310 @default.
- W2048147566 hasRelatedWork W2048225904 @default.
- W2048147566 hasRelatedWork W2063406554 @default.