Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048154080> ?p ?o ?g. }
- W2048154080 endingPage "202" @default.
- W2048154080 startingPage "186" @default.
- W2048154080 abstract "Abstract Monte Carlo computational methods have been introduced into data assimilation for nonlinear systems in order to alleviate the computational burden of updating and propagating the full probability distribution. By propagating an ensemble of representative states, algorithms like the ensemble Kalman filter (EnKF) and the resampled particle filter (RPF) rely on the existing modeling infrastructure to approximate the distribution based on the evolution of this ensemble. This work presents an ensemble-based smoother that is applicable to the Monte Carlo filtering schemes like EnKF and RPF. At the minor cost of retrospectively updating a set of weights for ensemble members, this smoother has demonstrated superior capabilities in state tracking for two highly nonlinear problems: the double-well potential and trivariate Lorenz systems. The algorithm does not require retrospective adaptation of the ensemble members themselves, and it is thus suited to a streaming operational mode. The accuracy of the proposed backward-update scheme in estimating non-Gaussian distributions is evaluated by comparison to the more accurate estimates provided by a Markov chain Monte Carlo algorithm." @default.
- W2048154080 created "2016-06-24" @default.
- W2048154080 creator A5021997192 @default.
- W2048154080 creator A5044489249 @default.
- W2048154080 creator A5045772011 @default.
- W2048154080 creator A5048218403 @default.
- W2048154080 date "2007-01-01" @default.
- W2048154080 modified "2023-10-02" @default.
- W2048154080 title "An Ensemble-Based Smoother with Retrospectively Updated Weights for Highly Nonlinear Systems" @default.
- W2048154080 cites W1483307070 @default.
- W2048154080 cites W1574590662 @default.
- W2048154080 cites W1598311721 @default.
- W2048154080 cites W1628119927 @default.
- W2048154080 cites W1648093232 @default.
- W2048154080 cites W1864720896 @default.
- W2048154080 cites W1982875779 @default.
- W2048154080 cites W1987308763 @default.
- W2048154080 cites W1988827501 @default.
- W2048154080 cites W1995462941 @default.
- W2048154080 cites W2008179957 @default.
- W2048154080 cites W2009104157 @default.
- W2048154080 cites W2009751220 @default.
- W2048154080 cites W2042151453 @default.
- W2048154080 cites W2049741199 @default.
- W2048154080 cites W2054739748 @default.
- W2048154080 cites W2056760934 @default.
- W2048154080 cites W2084180672 @default.
- W2048154080 cites W2089556301 @default.
- W2048154080 cites W2093201717 @default.
- W2048154080 cites W2106929356 @default.
- W2048154080 cites W2115876459 @default.
- W2048154080 cites W2124186797 @default.
- W2048154080 cites W2126736494 @default.
- W2048154080 cites W2128931495 @default.
- W2048154080 cites W2138309709 @default.
- W2048154080 cites W2141394518 @default.
- W2048154080 cites W2144668858 @default.
- W2048154080 cites W2147119488 @default.
- W2048154080 cites W2157098139 @default.
- W2048154080 cites W2161358768 @default.
- W2048154080 cites W2173363853 @default.
- W2048154080 cites W2173502753 @default.
- W2048154080 cites W2174043722 @default.
- W2048154080 cites W2174784159 @default.
- W2048154080 cites W2175433375 @default.
- W2048154080 cites W2179860363 @default.
- W2048154080 cites W2488678869 @default.
- W2048154080 cites W2605897274 @default.
- W2048154080 cites W3023639638 @default.
- W2048154080 cites W4230472026 @default.
- W2048154080 doi "https://doi.org/10.1175/mwr3353.1" @default.
- W2048154080 hasPublicationYear "2007" @default.
- W2048154080 type Work @default.
- W2048154080 sameAs 2048154080 @default.
- W2048154080 citedByCount "16" @default.
- W2048154080 countsByYear W20481540802013 @default.
- W2048154080 countsByYear W20481540802014 @default.
- W2048154080 countsByYear W20481540802017 @default.
- W2048154080 crossrefType "journal-article" @default.
- W2048154080 hasAuthorship W2048154080A5021997192 @default.
- W2048154080 hasAuthorship W2048154080A5044489249 @default.
- W2048154080 hasAuthorship W2048154080A5045772011 @default.
- W2048154080 hasAuthorship W2048154080A5048218403 @default.
- W2048154080 hasBestOaLocation W20481540801 @default.
- W2048154080 hasConcept C105795698 @default.
- W2048154080 hasConcept C111350023 @default.
- W2048154080 hasConcept C11413529 @default.
- W2048154080 hasConcept C121332964 @default.
- W2048154080 hasConcept C126255220 @default.
- W2048154080 hasConcept C153294291 @default.
- W2048154080 hasConcept C154945302 @default.
- W2048154080 hasConcept C157286648 @default.
- W2048154080 hasConcept C158622935 @default.
- W2048154080 hasConcept C163716315 @default.
- W2048154080 hasConcept C19499675 @default.
- W2048154080 hasConcept C206833254 @default.
- W2048154080 hasConcept C24552861 @default.
- W2048154080 hasConcept C33923547 @default.
- W2048154080 hasConcept C41008148 @default.
- W2048154080 hasConcept C45942800 @default.
- W2048154080 hasConcept C52421305 @default.
- W2048154080 hasConcept C62520636 @default.
- W2048154080 hasConcept C79334102 @default.
- W2048154080 hasConceptScore W2048154080C105795698 @default.
- W2048154080 hasConceptScore W2048154080C111350023 @default.
- W2048154080 hasConceptScore W2048154080C11413529 @default.
- W2048154080 hasConceptScore W2048154080C121332964 @default.
- W2048154080 hasConceptScore W2048154080C126255220 @default.
- W2048154080 hasConceptScore W2048154080C153294291 @default.
- W2048154080 hasConceptScore W2048154080C154945302 @default.
- W2048154080 hasConceptScore W2048154080C157286648 @default.
- W2048154080 hasConceptScore W2048154080C158622935 @default.
- W2048154080 hasConceptScore W2048154080C163716315 @default.
- W2048154080 hasConceptScore W2048154080C19499675 @default.
- W2048154080 hasConceptScore W2048154080C206833254 @default.
- W2048154080 hasConceptScore W2048154080C24552861 @default.
- W2048154080 hasConceptScore W2048154080C33923547 @default.
- W2048154080 hasConceptScore W2048154080C41008148 @default.