Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048181982> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2048181982 endingPage "68" @default.
- W2048181982 startingPage "57" @default.
- W2048181982 abstract "Summary The hydraulic diffusivity equation that governs the flow of compressible fluids in porous media is nonlinear. Although the gas-well test analysis by means of the pseudopressure function has become a standard field practice, the effect of viscosity and gas-compressibility variation with pressure is often neglected. Moreover, in field operations, the gas well is submitted to a variable rate production to determine well/reservoir properties and an estimation of the absolute open flow (AOF). For slightly compressible fluids, variable rate can be properly handled by superposition in time. Unfortunately, superposition cannot be casually justified for gas reservoirs because of its nonlinear behavior. In this paper, a general solution that properly accounts for both fluid property behavior and variable rate is presented. The proposed solution, which is derived from the Green's-function method by recasting the effect of the viscosity-compressibility product variation as a nonlinear source term, can handle variable gas rate for several well/reservoir geometries of practical interest. From the general solution, an analytical expression for variable-rate tests of a fully penetrating vertical well in an infinite gas reservoir is derived. This expression is applied to a synthetic data set to calculate the pressure response for a buildup test in an infinite homogeneous reservoir. The results compared with a commercial finite-difference numerical simulator show close agreement for both drawdown and buildup periods. It is also shown that the dimensionless pseudopressure converges to the slightly compressible fluid solution for long shut-in times. Thus, during those long times, Horner analysis and log-log derivative plot can be applied to obtain good estimation of reservoir parameters, as discussed previously in literature." @default.
- W2048181982 created "2016-06-24" @default.
- W2048181982 creator A5007395280 @default.
- W2048181982 creator A5047078732 @default.
- W2048181982 creator A5090269565 @default.
- W2048181982 date "2012-12-28" @default.
- W2048181982 modified "2023-09-26" @default.
- W2048181982 title "A Variable-Rate Solution to the Nonlinear Diffusivity Gas Equation by Use of Green's-Function Method" @default.
- W2048181982 cites W1519837037 @default.
- W2048181982 cites W2298275283 @default.
- W2048181982 cites W640450810 @default.
- W2048181982 doi "https://doi.org/10.2118/145468-pa" @default.
- W2048181982 hasPublicationYear "2012" @default.
- W2048181982 type Work @default.
- W2048181982 sameAs 2048181982 @default.
- W2048181982 citedByCount "17" @default.
- W2048181982 countsByYear W20481819822014 @default.
- W2048181982 countsByYear W20481819822015 @default.
- W2048181982 countsByYear W20481819822017 @default.
- W2048181982 countsByYear W20481819822018 @default.
- W2048181982 countsByYear W20481819822020 @default.
- W2048181982 countsByYear W20481819822021 @default.
- W2048181982 countsByYear W20481819822022 @default.
- W2048181982 countsByYear W20481819822023 @default.
- W2048181982 crossrefType "journal-article" @default.
- W2048181982 hasAuthorship W2048181982A5007395280 @default.
- W2048181982 hasAuthorship W2048181982A5047078732 @default.
- W2048181982 hasAuthorship W2048181982A5090269565 @default.
- W2048181982 hasConcept C105569014 @default.
- W2048181982 hasConcept C121332964 @default.
- W2048181982 hasConcept C127172972 @default.
- W2048181982 hasConcept C127313418 @default.
- W2048181982 hasConcept C134306372 @default.
- W2048181982 hasConcept C158622935 @default.
- W2048181982 hasConcept C187320778 @default.
- W2048181982 hasConcept C24872484 @default.
- W2048181982 hasConcept C27753989 @default.
- W2048181982 hasConcept C33923547 @default.
- W2048181982 hasConcept C37668627 @default.
- W2048181982 hasConcept C57879066 @default.
- W2048181982 hasConcept C62520636 @default.
- W2048181982 hasConcept C6648577 @default.
- W2048181982 hasConcept C84655787 @default.
- W2048181982 hasConcept C97355855 @default.
- W2048181982 hasConceptScore W2048181982C105569014 @default.
- W2048181982 hasConceptScore W2048181982C121332964 @default.
- W2048181982 hasConceptScore W2048181982C127172972 @default.
- W2048181982 hasConceptScore W2048181982C127313418 @default.
- W2048181982 hasConceptScore W2048181982C134306372 @default.
- W2048181982 hasConceptScore W2048181982C158622935 @default.
- W2048181982 hasConceptScore W2048181982C187320778 @default.
- W2048181982 hasConceptScore W2048181982C24872484 @default.
- W2048181982 hasConceptScore W2048181982C27753989 @default.
- W2048181982 hasConceptScore W2048181982C33923547 @default.
- W2048181982 hasConceptScore W2048181982C37668627 @default.
- W2048181982 hasConceptScore W2048181982C57879066 @default.
- W2048181982 hasConceptScore W2048181982C62520636 @default.
- W2048181982 hasConceptScore W2048181982C6648577 @default.
- W2048181982 hasConceptScore W2048181982C84655787 @default.
- W2048181982 hasConceptScore W2048181982C97355855 @default.
- W2048181982 hasIssue "01" @default.
- W2048181982 hasLocation W20481819821 @default.
- W2048181982 hasOpenAccess W2048181982 @default.
- W2048181982 hasPrimaryLocation W20481819821 @default.
- W2048181982 hasRelatedWork W1560810545 @default.
- W2048181982 hasRelatedWork W1981801772 @default.
- W2048181982 hasRelatedWork W1989277247 @default.
- W2048181982 hasRelatedWork W2008175319 @default.
- W2048181982 hasRelatedWork W2016358499 @default.
- W2048181982 hasRelatedWork W2050872676 @default.
- W2048181982 hasRelatedWork W2072427118 @default.
- W2048181982 hasRelatedWork W2150230653 @default.
- W2048181982 hasRelatedWork W2327021188 @default.
- W2048181982 hasRelatedWork W4206297652 @default.
- W2048181982 hasVolume "18" @default.
- W2048181982 isParatext "false" @default.
- W2048181982 isRetracted "false" @default.
- W2048181982 magId "2048181982" @default.
- W2048181982 workType "article" @default.