Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048263597> ?p ?o ?g. }
- W2048263597 endingPage "2610" @default.
- W2048263597 startingPage "2600" @default.
- W2048263597 abstract "Abstract Objective data assimilation methods such as variational and ensemble algorithms are attractive from a theoretical standpoint. Empirical nudging approaches are computationally efficient and can get around some amount of model error by using arbitrarily large nudging coefficients. In an attempt to take advantage of the strengths of both methods for analyses, combined nudging-ensemble approaches have been recently proposed. Here the two-scale Lorenz model is used to elucidate how the forecast error from nudging, ensemble, and nudging-ensemble schemes varies with model error. As expected, an ensemble filter and smoother are closest to optimal when model errors are small or absent. Model error is introduced by varying model forcing, coupling between scales, and spatial filtering. Nudging approaches perform relatively better with increased model error; use of poor ensemble covariance estimates when model error is large harms the nudging-ensemble performance. Consequently, nudging-ensemble methods always produce error levels between the objective ensemble filters and empirical nudging, and can never provide analyses or short-range forecasts with lower errors than both. As long as the nudged state and the ensemble-filter state are close enough, the ensemble statistics are useful for the nudging, and fully coupling the ensemble and nudging by centering the ensemble on the nudged state is not necessary. An ensemble smoother produces the overall smallest errors except for with very large model errors. Results are qualitatively independent of tuning parameters such as covariance inflation and localization." @default.
- W2048263597 created "2016-06-24" @default.
- W2048263597 creator A5018359419 @default.
- W2048263597 creator A5071969820 @default.
- W2048263597 date "2015-07-01" @default.
- W2048263597 modified "2023-10-03" @default.
- W2048263597 title "Nudging, Ensemble, and Nudging Ensembles for Data Assimilation in the Presence of Model Error" @default.
- W2048263597 cites W1976523267 @default.
- W2048263597 cites W1980785126 @default.
- W2048263597 cites W2015501304 @default.
- W2048263597 cites W2019960424 @default.
- W2048263597 cites W2030774493 @default.
- W2048263597 cites W2038371231 @default.
- W2048263597 cites W2045381799 @default.
- W2048263597 cites W2046894403 @default.
- W2048263597 cites W2051607933 @default.
- W2048263597 cites W2070268036 @default.
- W2048263597 cites W2079075738 @default.
- W2048263597 cites W2097615625 @default.
- W2048263597 cites W2100335374 @default.
- W2048263597 cites W2102885904 @default.
- W2048263597 cites W2105934661 @default.
- W2048263597 cites W2115956920 @default.
- W2048263597 cites W2120126266 @default.
- W2048263597 cites W2120349205 @default.
- W2048263597 cites W2125698736 @default.
- W2048263597 cites W2128200826 @default.
- W2048263597 cites W2148118587 @default.
- W2048263597 cites W2157098139 @default.
- W2048263597 cites W2157281407 @default.
- W2048263597 cites W2159586142 @default.
- W2048263597 cites W2178281043 @default.
- W2048263597 cites W3101511555 @default.
- W2048263597 cites W3106889297 @default.
- W2048263597 doi "https://doi.org/10.1175/mwr-d-14-00295.1" @default.
- W2048263597 hasPublicationYear "2015" @default.
- W2048263597 type Work @default.
- W2048263597 sameAs 2048263597 @default.
- W2048263597 citedByCount "16" @default.
- W2048263597 countsByYear W20482635972017 @default.
- W2048263597 countsByYear W20482635972020 @default.
- W2048263597 countsByYear W20482635972021 @default.
- W2048263597 countsByYear W20482635972022 @default.
- W2048263597 crossrefType "journal-article" @default.
- W2048263597 hasAuthorship W2048263597A5018359419 @default.
- W2048263597 hasAuthorship W2048263597A5071969820 @default.
- W2048263597 hasBestOaLocation W20482635971 @default.
- W2048263597 hasConcept C105795698 @default.
- W2048263597 hasConcept C119857082 @default.
- W2048263597 hasConcept C119898033 @default.
- W2048263597 hasConcept C121332964 @default.
- W2048263597 hasConcept C127313418 @default.
- W2048263597 hasConcept C134306372 @default.
- W2048263597 hasConcept C153294291 @default.
- W2048263597 hasConcept C154945302 @default.
- W2048263597 hasConcept C159985019 @default.
- W2048263597 hasConcept C178650346 @default.
- W2048263597 hasConcept C179024874 @default.
- W2048263597 hasConcept C192562407 @default.
- W2048263597 hasConcept C197115733 @default.
- W2048263597 hasConcept C204323151 @default.
- W2048263597 hasConcept C24552861 @default.
- W2048263597 hasConcept C33923547 @default.
- W2048263597 hasConcept C41008148 @default.
- W2048263597 hasConcept C45942800 @default.
- W2048263597 hasConcept C49204034 @default.
- W2048263597 hasConcept C51865526 @default.
- W2048263597 hasConceptScore W2048263597C105795698 @default.
- W2048263597 hasConceptScore W2048263597C119857082 @default.
- W2048263597 hasConceptScore W2048263597C119898033 @default.
- W2048263597 hasConceptScore W2048263597C121332964 @default.
- W2048263597 hasConceptScore W2048263597C127313418 @default.
- W2048263597 hasConceptScore W2048263597C134306372 @default.
- W2048263597 hasConceptScore W2048263597C153294291 @default.
- W2048263597 hasConceptScore W2048263597C154945302 @default.
- W2048263597 hasConceptScore W2048263597C159985019 @default.
- W2048263597 hasConceptScore W2048263597C178650346 @default.
- W2048263597 hasConceptScore W2048263597C179024874 @default.
- W2048263597 hasConceptScore W2048263597C192562407 @default.
- W2048263597 hasConceptScore W2048263597C197115733 @default.
- W2048263597 hasConceptScore W2048263597C204323151 @default.
- W2048263597 hasConceptScore W2048263597C24552861 @default.
- W2048263597 hasConceptScore W2048263597C33923547 @default.
- W2048263597 hasConceptScore W2048263597C41008148 @default.
- W2048263597 hasConceptScore W2048263597C45942800 @default.
- W2048263597 hasConceptScore W2048263597C49204034 @default.
- W2048263597 hasConceptScore W2048263597C51865526 @default.
- W2048263597 hasIssue "7" @default.
- W2048263597 hasLocation W20482635971 @default.
- W2048263597 hasOpenAccess W2048263597 @default.
- W2048263597 hasPrimaryLocation W20482635971 @default.
- W2048263597 hasRelatedWork W1480636815 @default.
- W2048263597 hasRelatedWork W1529978948 @default.
- W2048263597 hasRelatedWork W1821645233 @default.
- W2048263597 hasRelatedWork W1970821617 @default.
- W2048263597 hasRelatedWork W2048263597 @default.
- W2048263597 hasRelatedWork W2090514254 @default.
- W2048263597 hasRelatedWork W2554030136 @default.