Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048281837> ?p ?o ?g. }
- W2048281837 endingPage "1335" @default.
- W2048281837 startingPage "1319" @default.
- W2048281837 abstract "Time series are built as a result of real-valued observations ordered in time; however, in some cases, the values of the observed variables change significantly, and those changes do not produce useful information. Therefore, within defined periods of time, only those bounds in which the variables change are considered. The temporal sequence of vectors with the interval-valued elements is called a ‘multivariate interval-valued time series.’ In this paper, the problem of forecasting such data is addressed. It is proposed to use fuzzy grey cognitive maps (FGCMs) as a nonlinear predictive model. Using interval arithmetic, an evolutionary algorithm for learning FGCMs is developed, and it is shown how the new algorithm can be applied to learn FGCMs on the basis of historical time series data. Experiments with real meteorological data provided evidence that, for properly-adjusted learning and prediction horizons, the proposed approach can be used effectively to the forecasting of multivariate, interval-valued time series. The domain-specific interpretability of the FGCM-based model that was obtained also is confirmed." @default.
- W2048281837 created "2016-06-24" @default.
- W2048281837 creator A5058518771 @default.
- W2048281837 creator A5074015797 @default.
- W2048281837 date "2014-09-01" @default.
- W2048281837 modified "2023-10-03" @default.
- W2048281837 title "Evolutionary learning of fuzzy grey cognitive maps for the forecasting of multivariate, interval-valued time series" @default.
- W2048281837 cites W1977575836 @default.
- W2048281837 cites W1981584060 @default.
- W2048281837 cites W1989558941 @default.
- W2048281837 cites W1994440910 @default.
- W2048281837 cites W1995145426 @default.
- W2048281837 cites W1999592790 @default.
- W2048281837 cites W2002071019 @default.
- W2048281837 cites W2016210396 @default.
- W2048281837 cites W2016579456 @default.
- W2048281837 cites W2024826298 @default.
- W2048281837 cites W2026070608 @default.
- W2048281837 cites W2033395352 @default.
- W2048281837 cites W2034707435 @default.
- W2048281837 cites W2039853520 @default.
- W2048281837 cites W2056217570 @default.
- W2048281837 cites W2066031679 @default.
- W2048281837 cites W2069178824 @default.
- W2048281837 cites W2069729888 @default.
- W2048281837 cites W2072405942 @default.
- W2048281837 cites W2072934801 @default.
- W2048281837 cites W2073002835 @default.
- W2048281837 cites W2078301133 @default.
- W2048281837 cites W2081232506 @default.
- W2048281837 cites W2086400377 @default.
- W2048281837 cites W2095224843 @default.
- W2048281837 cites W2111949539 @default.
- W2048281837 cites W2116512828 @default.
- W2048281837 cites W2120198264 @default.
- W2048281837 cites W2129588477 @default.
- W2048281837 cites W2130426550 @default.
- W2048281837 cites W2904652864 @default.
- W2048281837 cites W4211007335 @default.
- W2048281837 cites W4230644069 @default.
- W2048281837 doi "https://doi.org/10.1016/j.ijar.2014.02.006" @default.
- W2048281837 hasPublicationYear "2014" @default.
- W2048281837 type Work @default.
- W2048281837 sameAs 2048281837 @default.
- W2048281837 citedByCount "83" @default.
- W2048281837 countsByYear W20482818372014 @default.
- W2048281837 countsByYear W20482818372015 @default.
- W2048281837 countsByYear W20482818372016 @default.
- W2048281837 countsByYear W20482818372017 @default.
- W2048281837 countsByYear W20482818372018 @default.
- W2048281837 countsByYear W20482818372019 @default.
- W2048281837 countsByYear W20482818372020 @default.
- W2048281837 countsByYear W20482818372021 @default.
- W2048281837 countsByYear W20482818372022 @default.
- W2048281837 countsByYear W20482818372023 @default.
- W2048281837 crossrefType "journal-article" @default.
- W2048281837 hasAuthorship W2048281837A5058518771 @default.
- W2048281837 hasAuthorship W2048281837A5074015797 @default.
- W2048281837 hasConcept C11413529 @default.
- W2048281837 hasConcept C114614502 @default.
- W2048281837 hasConcept C119857082 @default.
- W2048281837 hasConcept C124101348 @default.
- W2048281837 hasConcept C12426560 @default.
- W2048281837 hasConcept C143724316 @default.
- W2048281837 hasConcept C151406439 @default.
- W2048281837 hasConcept C151730666 @default.
- W2048281837 hasConcept C153180895 @default.
- W2048281837 hasConcept C154945302 @default.
- W2048281837 hasConcept C161584116 @default.
- W2048281837 hasConcept C1883856 @default.
- W2048281837 hasConcept C2524010 @default.
- W2048281837 hasConcept C2778067643 @default.
- W2048281837 hasConcept C2778112365 @default.
- W2048281837 hasConcept C2781067378 @default.
- W2048281837 hasConcept C33923547 @default.
- W2048281837 hasConcept C41008148 @default.
- W2048281837 hasConcept C42011625 @default.
- W2048281837 hasConcept C5041914 @default.
- W2048281837 hasConcept C54355233 @default.
- W2048281837 hasConcept C58166 @default.
- W2048281837 hasConcept C86803240 @default.
- W2048281837 hasConceptScore W2048281837C11413529 @default.
- W2048281837 hasConceptScore W2048281837C114614502 @default.
- W2048281837 hasConceptScore W2048281837C119857082 @default.
- W2048281837 hasConceptScore W2048281837C124101348 @default.
- W2048281837 hasConceptScore W2048281837C12426560 @default.
- W2048281837 hasConceptScore W2048281837C143724316 @default.
- W2048281837 hasConceptScore W2048281837C151406439 @default.
- W2048281837 hasConceptScore W2048281837C151730666 @default.
- W2048281837 hasConceptScore W2048281837C153180895 @default.
- W2048281837 hasConceptScore W2048281837C154945302 @default.
- W2048281837 hasConceptScore W2048281837C161584116 @default.
- W2048281837 hasConceptScore W2048281837C1883856 @default.
- W2048281837 hasConceptScore W2048281837C2524010 @default.
- W2048281837 hasConceptScore W2048281837C2778067643 @default.
- W2048281837 hasConceptScore W2048281837C2778112365 @default.
- W2048281837 hasConceptScore W2048281837C2781067378 @default.
- W2048281837 hasConceptScore W2048281837C33923547 @default.