Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048373502> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2048373502 endingPage "3374" @default.
- W2048373502 startingPage "3357" @default.
- W2048373502 abstract "Picard iteration is a widely used procedure for solving the nonlinear equation governing flow in variably saturated porous media. The method is simple to code and computationally cheap, but has been known to fail or converge slowly. The Newton method is more complex and expensive (on a per-iteration basis) than Picard, and as such has not received very much attention. Its robustness and higher rate of convergence, however, make it an attractive alternative to the Picard method, particularly for strongly nonlinear problems. In this paper the Picard and Newton schemes are implemented and compared in one-, two-, and three-dimensional finite element simulations involving both steady state and transient flow. The eight test cases presented highlight different aspects of the performance of the two iterative methods and the different factors that can affect their convergence and efficiency, including problem size, spatial and temporal discretization, initial solution estimates, convergence error norm, mass lumping, time weighting, conductivity and moisture content characteristics, boundary conditions, seepage faces, and the extent of fully saturated zones in the soil. Previous strategies for enhancing the performance of the Picard and Newton schemes are revisited, and new ones are suggested. The strategies include chord slope approximations for the derivatives of the characteristic equations, relaxing convergence requirements along seepage faces, dynamic time step control, nonlinear relaxation, and a mixed Picard-Newton approach. The tests show that the Picard or relaxed Picard schemes are often adequate for solving Richards' equation, but that in cases where these fail to converge or converge slowly, the Newton method should be used. The mixed Picard-Newton approach can effectively overcome the Newton scheme's sensitivity to initial solution estimates, while comparatively poor performance is reported for the various chord slope approximations. Finally, given the reliability and efficiency of current conjugate gradient-like methods for solving linear nonsymmetric systems, the only real drawback of using Newton rather than Picard iteration is the algebraic complexity and computational cost of assembling the derivative terms of the Jacobian matrix, and it is suggested that both methods can be effectively implemented and used in numerical models of Richards' equation." @default.
- W2048373502 created "2016-06-24" @default.
- W2048373502 creator A5061361815 @default.
- W2048373502 creator A5075181227 @default.
- W2048373502 date "1994-12-01" @default.
- W2048373502 modified "2023-09-30" @default.
- W2048373502 title "A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems" @default.
- W2048373502 cites W100927781 @default.
- W2048373502 cites W1969468690 @default.
- W2048373502 cites W1982499305 @default.
- W2048373502 cites W1991870451 @default.
- W2048373502 cites W2001645679 @default.
- W2048373502 cites W2003611391 @default.
- W2048373502 cites W2008862521 @default.
- W2048373502 cites W2016354480 @default.
- W2048373502 cites W2035176073 @default.
- W2048373502 cites W2036612979 @default.
- W2048373502 cites W2040298674 @default.
- W2048373502 cites W2062294426 @default.
- W2048373502 cites W2075648027 @default.
- W2048373502 cites W2086271053 @default.
- W2048373502 cites W2087800768 @default.
- W2048373502 cites W2087952846 @default.
- W2048373502 cites W2099370652 @default.
- W2048373502 cites W2142960277 @default.
- W2048373502 cites W2143168638 @default.
- W2048373502 cites W2152232608 @default.
- W2048373502 cites W2155216327 @default.
- W2048373502 cites W2213986762 @default.
- W2048373502 cites W2608505863 @default.
- W2048373502 cites W4302769929 @default.
- W2048373502 cites W773943682 @default.
- W2048373502 doi "https://doi.org/10.1029/94wr02046" @default.
- W2048373502 hasPublicationYear "1994" @default.
- W2048373502 type Work @default.
- W2048373502 sameAs 2048373502 @default.
- W2048373502 citedByCount "311" @default.
- W2048373502 countsByYear W20483735022012 @default.
- W2048373502 countsByYear W20483735022013 @default.
- W2048373502 countsByYear W20483735022014 @default.
- W2048373502 countsByYear W20483735022015 @default.
- W2048373502 countsByYear W20483735022016 @default.
- W2048373502 countsByYear W20483735022017 @default.
- W2048373502 countsByYear W20483735022018 @default.
- W2048373502 countsByYear W20483735022019 @default.
- W2048373502 countsByYear W20483735022020 @default.
- W2048373502 countsByYear W20483735022021 @default.
- W2048373502 countsByYear W20483735022022 @default.
- W2048373502 countsByYear W20483735022023 @default.
- W2048373502 crossrefType "journal-article" @default.
- W2048373502 hasAuthorship W2048373502A5061361815 @default.
- W2048373502 hasAuthorship W2048373502A5075181227 @default.
- W2048373502 hasConcept C121332964 @default.
- W2048373502 hasConcept C127313418 @default.
- W2048373502 hasConcept C158622935 @default.
- W2048373502 hasConcept C199343813 @default.
- W2048373502 hasConcept C2524010 @default.
- W2048373502 hasConcept C2777686260 @default.
- W2048373502 hasConcept C28826006 @default.
- W2048373502 hasConcept C33923547 @default.
- W2048373502 hasConcept C38349280 @default.
- W2048373502 hasConcept C62520636 @default.
- W2048373502 hasConcept C71924100 @default.
- W2048373502 hasConcept C85189116 @default.
- W2048373502 hasConceptScore W2048373502C121332964 @default.
- W2048373502 hasConceptScore W2048373502C127313418 @default.
- W2048373502 hasConceptScore W2048373502C158622935 @default.
- W2048373502 hasConceptScore W2048373502C199343813 @default.
- W2048373502 hasConceptScore W2048373502C2524010 @default.
- W2048373502 hasConceptScore W2048373502C2777686260 @default.
- W2048373502 hasConceptScore W2048373502C28826006 @default.
- W2048373502 hasConceptScore W2048373502C33923547 @default.
- W2048373502 hasConceptScore W2048373502C38349280 @default.
- W2048373502 hasConceptScore W2048373502C62520636 @default.
- W2048373502 hasConceptScore W2048373502C71924100 @default.
- W2048373502 hasConceptScore W2048373502C85189116 @default.
- W2048373502 hasIssue "12" @default.
- W2048373502 hasLocation W20483735021 @default.
- W2048373502 hasOpenAccess W2048373502 @default.
- W2048373502 hasPrimaryLocation W20483735021 @default.
- W2048373502 hasRelatedWork W1561146433 @default.
- W2048373502 hasRelatedWork W1994109492 @default.
- W2048373502 hasRelatedWork W1996810073 @default.
- W2048373502 hasRelatedWork W2032218588 @default.
- W2048373502 hasRelatedWork W2063488590 @default.
- W2048373502 hasRelatedWork W2089811522 @default.
- W2048373502 hasRelatedWork W2298446516 @default.
- W2048373502 hasRelatedWork W2351859806 @default.
- W2048373502 hasRelatedWork W4230623537 @default.
- W2048373502 hasRelatedWork W4239376463 @default.
- W2048373502 hasVolume "30" @default.
- W2048373502 isParatext "false" @default.
- W2048373502 isRetracted "false" @default.
- W2048373502 magId "2048373502" @default.
- W2048373502 workType "article" @default.