Matches in SemOpenAlex for { <https://semopenalex.org/work/W2048444900> ?p ?o ?g. }
- W2048444900 endingPage "67" @default.
- W2048444900 startingPage "59" @default.
- W2048444900 abstract "To account for both variability and uncertainty in nonpoint source pollution, one dimensional water quality model was integrated with Bayesian statistics and load duration curve methods to develop a variable total maximum daily load (TMDL) for total nitrogen (TN). Bayesian statistics was adopted to inversely calibrate the unknown parameters in the model, i.e., area-specific export rate (E) and in-stream loss rate coefficient (K) for TN, from the stream monitoring data. Prior distributions for E and K based on published measurements were developed to support Bayesian parameter calibration. Then the resulting E and K values were used in water quality model for simulation of catchment TN export load, TMDL and required load reduction along with their uncertainties in the ChangLe River agricultural watershed in eastern China. Results indicated that the export load, TMDL and required load reduction for TN synchronously increased with increasing stream water discharge. The uncertainties associated with these estimates also presented temporal variability with higher uncertainties for the high flow regime and lower uncertainties for the low flow regime. To assure 90% compliance with the targeted in-stream TN concentration of 2.0 mg L− 1, the required load reduction was determined to be 1.7 × 103, 4.6 × 103, and 14.6 × 103 kg TN d− 1 for low, median and high flow regimes, respectively. The integrated modeling approach developed in this study allows decision makers to determine the required load reduction for different TN compliance levels while incorporating both flow-dependent variability and uncertainty assessment to support practical adaptive implementation of TMDL programs." @default.
- W2048444900 created "2016-06-24" @default.
- W2048444900 creator A5009935409 @default.
- W2048444900 creator A5028649883 @default.
- W2048444900 creator A5039537374 @default.
- W2048444900 creator A5086399677 @default.
- W2048444900 date "2012-07-01" @default.
- W2048444900 modified "2023-10-06" @default.
- W2048444900 title "A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment" @default.
- W2048444900 cites W1517555081 @default.
- W2048444900 cites W1552441047 @default.
- W2048444900 cites W156627570 @default.
- W2048444900 cites W1614222768 @default.
- W2048444900 cites W1927498681 @default.
- W2048444900 cites W1974473926 @default.
- W2048444900 cites W1979609378 @default.
- W2048444900 cites W1984572865 @default.
- W2048444900 cites W1995631680 @default.
- W2048444900 cites W1997028736 @default.
- W2048444900 cites W2003912780 @default.
- W2048444900 cites W2005836187 @default.
- W2048444900 cites W2023925255 @default.
- W2048444900 cites W2034993173 @default.
- W2048444900 cites W2048478253 @default.
- W2048444900 cites W2049063015 @default.
- W2048444900 cites W2050011364 @default.
- W2048444900 cites W2059590506 @default.
- W2048444900 cites W2060041781 @default.
- W2048444900 cites W2060776638 @default.
- W2048444900 cites W206186771 @default.
- W2048444900 cites W2079758846 @default.
- W2048444900 cites W2083545188 @default.
- W2048444900 cites W2086609121 @default.
- W2048444900 cites W2105810946 @default.
- W2048444900 cites W2116857351 @default.
- W2048444900 cites W2123289280 @default.
- W2048444900 cites W2132082910 @default.
- W2048444900 cites W2135003112 @default.
- W2048444900 cites W2164096913 @default.
- W2048444900 cites W2165194448 @default.
- W2048444900 cites W2166819728 @default.
- W2048444900 cites W2197722873 @default.
- W2048444900 cites W4235065193 @default.
- W2048444900 doi "https://doi.org/10.1016/j.scitotenv.2012.04.042" @default.
- W2048444900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22634550" @default.
- W2048444900 hasPublicationYear "2012" @default.
- W2048444900 type Work @default.
- W2048444900 sameAs 2048444900 @default.
- W2048444900 citedByCount "34" @default.
- W2048444900 countsByYear W20484449002013 @default.
- W2048444900 countsByYear W20484449002014 @default.
- W2048444900 countsByYear W20484449002015 @default.
- W2048444900 countsByYear W20484449002016 @default.
- W2048444900 countsByYear W20484449002017 @default.
- W2048444900 countsByYear W20484449002018 @default.
- W2048444900 countsByYear W20484449002019 @default.
- W2048444900 countsByYear W20484449002020 @default.
- W2048444900 countsByYear W20484449002021 @default.
- W2048444900 countsByYear W20484449002022 @default.
- W2048444900 crossrefType "journal-article" @default.
- W2048444900 hasAuthorship W2048444900A5009935409 @default.
- W2048444900 hasAuthorship W2048444900A5028649883 @default.
- W2048444900 hasAuthorship W2048444900A5039537374 @default.
- W2048444900 hasAuthorship W2048444900A5086399677 @default.
- W2048444900 hasConcept C105795698 @default.
- W2048444900 hasConcept C107673813 @default.
- W2048444900 hasConcept C119857082 @default.
- W2048444900 hasConcept C127413603 @default.
- W2048444900 hasConcept C144024400 @default.
- W2048444900 hasConcept C150547873 @default.
- W2048444900 hasConcept C152232337 @default.
- W2048444900 hasConcept C159390177 @default.
- W2048444900 hasConcept C165838908 @default.
- W2048444900 hasConcept C177803969 @default.
- W2048444900 hasConcept C179006392 @default.
- W2048444900 hasConcept C187320778 @default.
- W2048444900 hasConcept C18903297 @default.
- W2048444900 hasConcept C2780797713 @default.
- W2048444900 hasConcept C33923547 @default.
- W2048444900 hasConcept C39432304 @default.
- W2048444900 hasConcept C41008148 @default.
- W2048444900 hasConcept C46312422 @default.
- W2048444900 hasConcept C76886044 @default.
- W2048444900 hasConcept C86803240 @default.
- W2048444900 hasConcept C94361409 @default.
- W2048444900 hasConceptScore W2048444900C105795698 @default.
- W2048444900 hasConceptScore W2048444900C107673813 @default.
- W2048444900 hasConceptScore W2048444900C119857082 @default.
- W2048444900 hasConceptScore W2048444900C127413603 @default.
- W2048444900 hasConceptScore W2048444900C144024400 @default.
- W2048444900 hasConceptScore W2048444900C150547873 @default.
- W2048444900 hasConceptScore W2048444900C152232337 @default.
- W2048444900 hasConceptScore W2048444900C159390177 @default.
- W2048444900 hasConceptScore W2048444900C165838908 @default.
- W2048444900 hasConceptScore W2048444900C177803969 @default.
- W2048444900 hasConceptScore W2048444900C179006392 @default.
- W2048444900 hasConceptScore W2048444900C187320778 @default.
- W2048444900 hasConceptScore W2048444900C18903297 @default.